

Logistics

Information Retrieval Overview
Crossword \& Other Puzzles
Knowledge Navigator
Visualization

Precision-recall curves

The Boolean Model

- Simple model based on set theory
- Queries specified as boolean expressions precise semantics
- Terms are either present or absent.

Thus, $w_{i j} \varepsilon\{0,1\}$

- Consider
$q=k a \wedge(k b \vee \neg k c)$
$\operatorname{dnf}(q)=(1,1,1) \vee(1,1,0) \vee(1,0,0)$
$c c=(1,1,0)$ is a conjunctive component

Thus ... The Vector Model

- Use of binary weights is too limiting
- $[0,1]$ term weights are used to compute Degree of similarity between a query and documents
- Allows ranking of results

Terminology: Term Weights	
- Not all terms are equally useful for representing the document contents - Less frequent terms allow identifying a narrower set of documents The importance of the index terms is represented by weights associated to them	k_{i} is an index term d_{j} is a document t is the total number of docs $K=\left\{\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{t}}\right\}$, the set of all index terms $w_{i j}>=0$ is a weight associated with ($k_{i j} d_{j}$) $w_{i j}=0$ indicates term missing from doc $\operatorname{vec}\left(d_{j}\right)=\left(w_{1 j}, w_{2 j}, \ldots, w_{t j}\right)$ is a weighted vector associated with the document d_{j} (or query q)

Drawbacks of the Boolean Model

- Binary decision criteria

No notion of partial matching

No ranking or grading scale

- Users must write Boolean expression

Awkward

Often too simplistic

- Hence users get too few or too many documents

Documents as bags of words

a: System and human system
engineering testing of EPS
b: A survey of user opinion of computer
system response time
: The EPS user interface management system
d: Human machine interface for $A B C$ computer applications
e : Relation of user perceived response
time to error measurement
f : The generation of random, binary ordered trees
g: The intersection graph of paths in trees
h: Graph minors IV: Widths of trees and well-quasi-ordering
i: Graph minors: A survey

	Documents									
		a	b	c	d	e	f	g	h	
	Interface	0	0	1	0	0	0	0	0	0
	User	0	1	1	0	1	0	0	0	0
	System	2	1	1	0	0	0	0	0	0
	Human	1	0	0	1	0	0	0	0	0
	Computer	0	1	0	1	0	0	0	0	0
	Response	0	1	0	0	1	0	0	0	0
	Time	0	1	0	0	1	0	0	0	0
	EPS	1	0	1	0	0	0	0	0	0
	Survey	0	1	0	0	0	0	0	0	1
$\begin{gathered} \stackrel{n}{E} \\ \stackrel{y}{2} \\ \stackrel{1}{2} \end{gathered}$	Trees	0	0	0	0	0	1	1	1	0
	Graph	0	0	0	0	0	0	1	1	1
	Minors	0	0	0	0	0	0	0	1	1

[^0]
Vector Space Example

a: System and human system
engineering testing of EPS
b : A survey of user opinion of
computer system response time
The EPS user interface
management system
d: Human machine interface for $A B C$
computer applications
e: Relation of user perceived
response time to error measurement
f : The generation of random, binary ordered trees
g : The intersection graph of paths in trees
h : Graph minors IV: Widths of trees and well-quasi-ordering
i: Graph minors: A survey

	Documents								
	a	b	c	d	e f		g	h	1
Interface	0	0	1	0	0	0	0	0	0
User	0	1	1	0	1	0	0	0	0
System	2	1	1	0	0	0	0	0	0
Human	1	0	0	1	0	0	0	0	0
Computer	0	1	0	1	0	0	0	0	0
Response	0	1	0	0	1	0	0	0	0
Time	0	1	0	0	1	0	0	0	0
EPS	1	0	1	0	0	0	-	0	0
Survey	0	1	0	0	0	0	0	0	1
Trees	0	0	0	0	0	1	1	1	0
Graph	0	0	0	0	0	0	1	1	1
Minors	0	0	0	0	0	0	0	1	1

Similarity Function

The similarity or closeness of a document $d=\left(w_{1}, \ldots, w_{i}, \ldots, w_{n}\right)$
with respect to a query (or another document)
$q=\left(q_{1}, \ldots, q_{i}, \ldots, q_{n}\right)$
is computed using a similarity (distance) function.
Many similarity functions exist

Cosine metric

$\operatorname{sim}\left(q, d_{j}\right)=\cos (\Theta)$
$=\left[\operatorname{vec}\left(d_{j}\right) \cdot \operatorname{vec}(q)\right] /\left|d_{j}\right| *|q|$
$=\left[\Sigma w_{i j}{ }^{*} w_{i q}\right] /\left|d_{j}\right| *|q|$
$0<=\operatorname{sim}\left(q, d_{j}\right)<=1 \quad\left(\right.$ Since $w_{i j}>0$ and $\left.w_{i q}>0\right)$
Retrieves docs even if only partial match to query

Term Weights in the Vector Model
$\operatorname{sim}\left(q, d_{j}\right)=\left[\Sigma w_{i j}{ }^{*} w_{i q}\right] /\left|d_{j}\right| *|q|$
How to compute the weights wij and wiq? Simple frequencies favor common words
E.g. Query: The Computer Tomography

A good weight must account for 2 effects:
Intra-document contents (similarity)
tf factor, the term frequency within a doc

Inter-document separation (dis-similarity) idf factor, the inverse document frequency
$i d f(i)=\log \left(N / n_{i}\right)$

```
Let, TF-IDF
    N be the total number of docs in the collection
    ni be the number of docs which contain ki
    freq(i,j) raw frequency of ki within dj
A normalized tf factor is given by
    f(i,j) = freq(i,j)/ max(freq(i,j))
    - where the maximum is computed over all terms which
        occur within the document dj
    The idf factor is computed as
    idf(i)=\operatorname{log}(N/ni)
    - the log is used to make the values of tf and idf
    comparable.
    - Can be interpreted as the amount of information
    associated with the term ki.
```


Motivating the Need for LSI

-- Relevant docs may not have the query terms \rightarrow but may have many "related" terms
-- Irrelevant docs may have the query terms \rightarrow but may not have any "related" terms

Latent Semantic Indexing

- Creates modified vector space
- Captures transitive co-occurrence information

If docs A \& B don't share any words, with each other, but both share lots of words with $\operatorname{doc} C$, then A \& B will be considered similar
Handles polysemy (adam's apple) \& synonymy

- Simulates query expansion and document clustering (sort of)

LSI Intuition
- The key idea is to map documents and
queries into a lower dimensional space (i.e.,
composed of higher level concepts which
are in fewer number than the index terms)
- Retrieval in this reduced concept space
might be superior to retrieval in the space
of index terms

Linear Algebra Review

- Let A be a matrix
- X is an Eigenvector of A if

- λ is an Eigenvalue
- Transpose:

Singular Value Decomposition

- Factor [Aij] matrix into 3 matrices as follows:
- $(A i j)=(U)(S)(V)^{\dagger}$
(U) is the matrix of eigenvectors derived from (A)(A) ${ }^{\dagger}$
$(V)^{+}$is the matrix of eigenvectors derived from $(A)^{+}(A)$
(S) is an $r \times r$ diagonal matrix of singular values
- $r=\min (t, n)$ that is, the rank of (Aij)
mand . Singular values are the positive square roots of the eigen values of $(A)(A)^{\dagger}\left(\right.$ also $\left.(A)^{\dagger}(A)\right)$

Now to Reduce Dimensions...

- In the matrix (S), select k largest singular values
- Keep the corresponding columns in (U) and $(\mathrm{V})^{\mathrm{t}}$
- The resultant matrix is called $(\mathrm{M})_{k}$ and is given by $(\mathrm{M})_{k}=(\mathrm{U})_{k}(\mathrm{~S})_{k}(\mathrm{~V})_{k}^{\mathrm{t}}$
where $k, k<r$, is the dimensionality of the concept space
- The parameter k should be
large enough to allow fitting the characteristics of the data small enough to filter out the non-relevant representational details

Calculating Information Loss

In agreement with our intuition, most of the variance in the data is captured by the first two principal components. In fact, if we were to retain only these (wo principal components (as two surrogate terms instead of the six origina) erms), the fraction of variance that our two-dimensional representation reains is $\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right) / \sum_{i=1}^{6} \lambda_{i}^{2}=0.925$; ie., only 7.5% of the information has been lost (in a mean-square sense). If we represent the documents in the new twodimensional principal component space, the coefficients for each document correspond to the first two columns of the \mathbf{U} matrix:
d1 $30.8998 \quad-11.4912$
d2 $\quad 30.3131-10.7801$
d4 $\begin{array}{rrr}8.3765 & -7.7138 \\ \mathbf{- 3 . 5 6 1 1}\end{array} \quad$ Should clean this up into a $\begin{array}{lrrr}\text { ds } & 52.7057 & -20.6051\end{array} \quad$ slide summarizing the info $\begin{array}{lllll}\text { d7 } & 10.8052 & 21.9140 & \text { loss formula }\end{array}$
d8 $11.5080 \quad 28.0101$
d9 $\quad 9.5259 \quad 17.7666$
$\begin{array}{rr}\text { d10 } & 19.9219 \quad 45.0751\end{array}$

SVD Computation complexity

For an $m \times n$ matrix SVD computation is $O\left(k m^{2} n+k^{\prime} n^{3}\right)$ complexity - $k=4$ and $k^{\prime}=22$ for best algorithms Approximate algorithms that exploit the sparsity of M are available (and being developed)

What LSI can do

- LSI analysis effectively does

Dimensionality reduction
Noise reduction
Exploitation of redundant data
Correlation analysis and Query expansion (with related words)

- Any one of the individual effects can be achieved with simpler techniques (see thesaurus construction). But LSI does all of them together.

- Weaknesses | PROVERB |
| :--- |
| |
| |
| |
| |
| |
| |
| |
| |

CWDB
Useful?
$94.8 \% \rightarrow 27.1 \%$
Fair?
Clue transformations
Learned

CSPs and IR

Domain from ranked candidate list?
Tortellini topping:
TRATORIA, COUSCOUS,SEMOLINA,PARMESAN, RIGATONI, PLATEFUL, FORDLTDS, SCOTTIES, ASPIRINS, MACARONI,FROSTING, RYEBREAD, STREUSEL, LASAGNAS,GRIFTERS, BAKERIES,... MARINARA,REDMEATS, VESUVIUS,
Standard recall/precision tradeoff.

Probabilities to the Rescue?

Annotate domain with the bias.

Wigwam

QA via AQUA (Abney et al. 00)
back off: word match in order helps score.
"When was Amelia Earhart's last flight?"

- 1937, 1897 (birth), 1997 (reenactment)

Named entities only, 100G of web pages
Move selection via MDP (Littman 00)
Estimate category accuracy.
Minimize expected turns to finish.
QA on the Web...

Solution Probability

Proportional to the product of the probability of the individual choices.

Can pick sol'n with maximum probability. Maximizes prob. of whole puzzle correct. Won't maximize number of words correct.

Trivial Pursuit ${ }^{\text {TM }}$

Race around board, answer questions. Categories: Geography, Entertainment, History, Literature, Science, Sports

Experimental Methodology

- Idea: In order to answer n questions, how much user effort has to be exerted
- Implementation:

A question is answered if

- the answer phrases are found in the result pages returned by the service, or
- they are found in the web pages pointed to by the results.
Bias in favor of Mulder's opponents

Experimental Methodology

- User Effort = Word Distance \# of words read before answers are encountered

- Google/AskJeeves query with the original question

Knowledge Navigator

Tufte

Tufte's Principles

1. The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities themselves
2. Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.

Case Study

Removing Obvious Chart Junk

[^0]: The Vector Model Definitions - Documents/Queries modeled as bags of words

 Represented as vectors over keyword
 $\operatorname{vec}(d j)=(w 1 j, w 2 j, \ldots, w+j)$
 $v e c(q)=(w 1 q, w 2 q, \ldots, w+q)$

 - wij >0 whenever $k i \in d j$
 - wiq $>=0$ associated with the pair (k

 To each term $k i$ is associated a unitary vector vec(i)

 - Unitary vectors vec(i) and vec(j) are assu orthonormal
 - What does this mean? » Is this Reasonable??????
 t unitary vectors vec(i) form an orthonormal basis for a \dagger-dimensional spuce

