Crosswords, Games, Visualization CSE 573

The Boolean Model

- Simple model based on set theory
- Queries specified as boolean expressions precise semantics
- Terms are either present or absent. Thus, *w_{ij}* ε {0,1}
- Consider
 - $q = ka \wedge (kb \vee \neg kc)$ $dnf(q) = (1,1,1) \lor (1,1,0) \lor (1,0,0)$ cc = (1,1,0) is a conjunctive component

Drawbacks of the Boolean Model

- Binary decision criteria No notion of partial matching No ranking or grading scale
- Users must write Boolean expression Awkward
 - Often too simplistic
- Hence users get too few or too many documents

- Use of binary weights is too limiting
- [0, 1] term weights are used to compute Degree of similarity between a query and documents
- Allows ranking of results

Documents as bags of words

- a: System and human system engineering testing of EPS
 b: A survey of user opinion of computer system response time
- c: The EPS user interface management system
- system d: Human machine interface for ABC computer applications e: Relation of user perceived response time to error measurement f: The generation of random, binary, ordered trees
- g: The intersection graph of paths in
- trees h: Graph minors IV: Widths of trees and well-quasi-ordering
- i: Graph minors: A survey

	D	ocu	me	nts	
- 1					

	а	b	С	d	е	f	g	h	1
Interface	0	0	1	0	0	0	0	0	0
User	0	1	1	0	1	0	0	0	0
System	2	1	1	0	0	0	0	0	0
Human	1	0	0	1	0	0	0	0	0
Computer	0	1	0	1	0	0	0	0	0
Response	0	1	0	0	1	0	0	0	0
Time	0	1	0	0	1	0	0	0	0
EPS	1	0	1	0	0	0	0	0	0
Survey	0	1	0	0	0	0	0	0	1
Trees	0	0	0	0	0	1	1	1	0
Graph	0	0	0	0	0	0	1	1	1
Minors	0	0	0	0	0	0	0	1	1

Terminology: Term Weights • Not all terms are k_i is an index term equally useful for d_i is a document representing the is the total number of docs † $K = \{k_1, k_2, ..., k_t\}$, the set of all index terms $w_{ij} \ge 0$ is a weight associated with $(k_{ij}d_{j})$ $w_{ij} \ge 0$ is described to the set of document contents Less frequent terms $w_{ii} = 0$ indicates term missing from doc allow identifying a $vec(d_j) = (w_{1j}, w_{2j}, ..., w_{rj})$ is a weighted vector associated with the document d_j narrower set of documents (or query q) The *importance* of the index terms is represented by weights associated

to them

2

Let, N be the total number of docs in the collection ni be the number of docs which contain ki freq(i,j) raw frequency of ki within dj A normalized tf factor is given by f(i,j) = freq(i,j) / max(freq(i,j))• where the maximum is computed over all terms which occur within the document dj The idf factor is computed as idf(i) = log (N/ni) • the log is used to make the values of tf and idf comparable. • Can be interpreted as the amount of information associated with the term ki.

LSI Intuition

- The key idea is to map documents and queries into a lower dimensional space (i.e., composed of higher level concepts which are in fewer number than the index terms)
- Retrieval in this reduced concept space might be superior to retrieval in the space of index terms

Latent Semantic Indexing Defns Let m be the total number of index terms Let n be the number of documents Let [Aij] be a term-document matrix With m rows and n columns Entries = weights, wij, associated with the pair [ki,dj] The weights can be computed with tf-idf

Now to Reduce Dimensions... In the matrix (S), select k largest singular values Keep the corresponding columns in (U) and (V)¹ The resultant matrix is called (M)_k and is given by (M)_k = (U)_k (S)_k (V)¹_k where k, k < r, is the dimensionality of the concept space The parameter k should be large enough to allow fitting the characteristics of the data small enough to filter out the non-relevant representational details The classic issue

						matrix	that is closes	st to	M in the
U (9x7) =						matrix	norm sense		
0.3996	-0.1037	0.5606	-0.3717	-0.3919	-0.3482	0.10 1114117	norm sense		
0.4180	-0.0641	0.4878	0.1566	0.5771	0.1981	-0.1094		2 (0-2)	
0.3464	-0.4422	-0.3997	-0.5142	0.2787	0.0102	-0.2857	0.	2 (9X2) =	0.1027
0.1888	0.4615	0.0049	-0.0279	-0.2087	0.4193	-0.6629		0.3996	-0.1037
0.3602	0.3776	-0.0914	0.1596	-0.2045	-0.3701	-0.1023		0.4180	-0.0641
0.4075	0.3622	-0.3657	-0.2684	-0.0174	0.2711	0.5676		0.5464	-0.4422
0.2750	0.1007	-0.1505	0.4370	0.3644	-0.5000	0.1250		0.1666	0.4015
0.2239	-0.3090	-0.5579	0.3127	-0.2400	-0.5122	-0.2011		0.3002	0.3677
0.2958	-0.4232	0.0277	0.4505	-0.3800	0.5114	0.2010		0.4075	0.1667
2 0001	0		0	0	0			0.2750	0.2006
3.9901	2 2912	0 0		0	0			0.2259	0.4222
0	0 16	705 0	0 0	0	0			0.2958	-0.42.32
0	0 1.0	0 1352	2 0	0	0		S	$2(2x^2) =$	
0	0	0 0	1 1818	0	0			3 9901	0
0	0	0 0	0 0	6623	0			0 2	2813
ö	0	0 0	0	0 0.64	87				
V(7x8) =							V	2 (8x2) =	
0.2917	-0.2674	0.3883	-0.5393	0.3926	-0.2112	-0.4505		0.2917	-0.2674
0.3399	0.4811	0.0649	-0.3760	-0.6959	-0.0421	-0.1462		0.3399	0.4811
0.1889	-0.0351	-0.4582	-0.5788	0.2211	0.4247	0.4346		0.1889	-0.0351
-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	0.0000		-0.0000	-0.0000
0.6838	-0.1913	-0.1609	0.2535	0.0050	-0.5229	0.3636		0.6838	-0.1913
0.4134	0.5716	-0.0566	0.3383	0.4493	0.3198	-0.2839		0.4134	0.5716
0.2176	-0.5151	-0.4369	0.1694	-0.2893	0.3161	-0.5330		0.2176	-0.5151
0.2791	-0.2591	0.6442	0.1593	-0.1648	0.5455	0.2998		0.2791	-0.2591

In ag	greement wit	h our intuition, n	nost of the variance in the data is captured
by th	ne first two p	rincipal compone	ents. In fact, if we were to retain only these
term	s), the fraction	nponents (as two on of variance th	surrogate terms instead of the six original
tains	is $(\lambda_1^2 + \lambda_2^2)/$	$\sum_{i=1}^{6} \lambda_i^2 = 0.925$	i.e., only 7.5% of the information has been
lost (in a mean-so	juare sense). If we	e represent the documents in the new two-
dime	ensional prin	cipal component	space, the coefficients for each document
corre	spond to the	first two column	as of the U matrix:
dl	30.8998	-11.4912	
d2	30.3131	-10.7801	
d3	18.0007	-7.7138	
d3 d4	18.0007 8.3765	-3.5611	Should clean this up into a
d3 d4 d5	18.0007 8.3765 52.7057	-3.5611 -20.6051	Should clean this up into a slide summarizing the info
d3 d4 d5 d6	18.0007 8.3765 52.7057 14.2118	-7.7138 -3.5611 -20.6051 21.8263	Should clean this up into a slide summarizing the info
d3 d4 d5 d6 d7	18.0007 8.3765 52.7057 14.2118 10.8052	-7.7138 -3.5611 -20.6051 21.8263 21.9140	Should clean this up into a slide summarizing the info loss formula
d3 d4 d5 d6 d7 d8	18.0007 8.3765 52.7057 14.2118 10.8052 11.5080	-7.7138 -3.5611 -20.6051 21.8263 21.9140 28.0101	Should clean this up into a slide summarizing the info loss formula
d3 d4 d5 d6 d7 d8 d9	18.0007 8.3765 52.7057 14.2118 10.8052 11.5080 9.5259	-7.7138 -3.5611 -20.6051 21.8263 21.9140 28.0101 17.7666	Should clean this up into a slide summarizing the info loss formula

CWDB

 Useful? 94.8% → 27.1%
 Fair?

• Clue transformations Learned

Merging

Modules provide:

Ordered list <candidate, weight> Confidence Statistics Scale Scale length Spread

CSPs and IR Domain from ranked candidate list? Tortellini topping: TRATORIA, COUSCOUS, SEMOLINA, PARMESAN, RIGATONI, PLATEFUL, FORDLTDS, SCOTTIES, ASPIRINS, MACARONI, FROSTING, RYEBREAD, STREUSEL, LASAGNAS, GRIFTERS, BAKERIES,... MARINARA, REDMEATS, VESUVIUS, ...

Standard recall/precision tradeoff.

Solution Probability

Proportional to the product of the probability of the individual choices.

$$\label{eq:right} \begin{split} &\alpha \ \mbox{Pr}(\mbox{IN}) \mbox{x} \mbox{Pr}(\mbox{FUN}) \mbox{x} \mbox{Pr}(\mbox{TO}) \mbox{x} \\ & \ \mbox{Pr}(\mbox{IF}) \mbox{x} \mbox{Pr}(\mbox{NO}) \\ &= 0.003969 \end{split}$$

Can pick sol'n with maximum probability. Maximizes prob. of whole puzzle correct. Won't maximize number of words correct.

Wigwam

QA via AQUA (Abney et al. 00)

- back off: word match in order helps score.
- "When was Amelia Earhart's last flight?"
- 1937, 1897 (birth), 1997 (reenactment)
- Named entities only, 100G of web pages
- Move selection via MDP (Littman 00)
 - Estimate category accuracy.
 - Minimize expected turns to finish.
- QA on the Web...

Tufte's Principles The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities themselves Clear, detailed, and thorough labeling should be used to defeat graphical distortion and ambiguity. Write out explanations of the data on the graphic itself. Label important events in the data.

		R	len	101	1e	Ih	IS!		
20	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+
8	+	+	+	+	+	4	+	+	+
	+	+	+	+	+	+	+	+	+
30	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+
10	+	+	•	+	+	+	+	+	+
	10		20		50		70		90

	Case St	udy	
Droblom 1	Base Algo	Heuristic 1	Heuristic 2
Problem 2	200	210	120
Problem 3	300	270	160
Problem 4	320	260	170
Problem 5	400	325	210
	475	420	230

