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Proverb: The Probabilistic CruciverbalistGreg A. Keim, Noam Shazeer, Michael L. Littman,Sushant Agarwal, Catherine M. Cheves, Joseph Fitzgerald,Jason Grosland, Fan Jiang, Shannon Pollard, Karl WeinmeisterDepartment of Computer ScienceDuke University, Durham, NC 27708-0129contact: keim@cs.duke.eduAbstractWe attacked the problem of solving crossword puzzlesby computer: given a set of clues and a crossword grid,try to maximize the number of words correctly �lledin. After an analysis of a large collection of puzzles,we decided to use an open architecture in which inde-pendent programs specialize in solving speci�c typesof clues, drawing on ideas from information retrieval,database search, and machine learning. Each expertmodule generates a (possibly empty) candidate listfor each clue, and the lists are merged together andplaced into the grid by a centralized solver. We useda probabilistic representation throughout the systemas a common interchange language between subsys-tems and to drive the search for an optimal solution.Proverb, the complete system, averages 95.3% wordscorrect and 98.1% letters correct in under 15 min-utes per puzzle on a sample of 370 puzzles taken fromthe New York Times and several other puzzle sources.This corresponds to missing roughly 3 words or 4 let-ters on a daily 15 � 15 puzzle, making Proverb abetter-than-average cruciverbalist (crossword solver).IntroductionProverbs 022:021 That I might make thee knowthe certainty of the words of truth...Crossword puzzles are attempted daily by millionsof people, and require of the solver both an extensiveknowledge of language, history and popular culture,and a search over possible answers to �nd a set that�ts in the grid. This dual task, of answering natu-ral language questions requiring shallow, broad knowl-edge, and of searching for an optimal set of answers forthe grid, makes these puzzles an interesting challengefor arti�cial intelligence. In this paper, we describeProverb, the �rst broad-coverage computer systemfor solving crossword puzzles1. While Proverb's per-formance is well below that of human champions, itexceeds that of casual human solvers, averaging over95% words correct over a test set of 370 puzzles.1Crossword Maestro is a commercial solver for British-style crosswords published by Genius 2000 Software. It isintended as a solving aid, and while it appears quite goodat thesaurus-type clues, in informal tests it did poorly atgrid �lling (under 5% words correct).

We will �rst describe the problem and providesome of the insights we gained from studying a largedatabase of crossword puzzles, which motivated ourdesign choices. We will then discuss our underlyingprobabilistic model and the architecture of Proverb,including how answers to clues are suggested by expertmodules, and how we search for an optimal �t of thesepossible answers into the grid. Finally, we will presentthe system's performance on a large test suite of dailycrossword puzzles, as well as on 1998 tournament puz-zles. The Crossword Solving ProblemThe solution to a crossword puzzle is a set of interlock-ing words (targets) written across and down a squaregrid. The solver is presented with an empty grid and aset of clues; each clue suggests its corresponding target.Some clue-target pairs are relatively direct: �Floridafruit [6]: orange�2, while others are more oblique andbased on word play: �Where to get a date [4]: palm�.Clues are between one and at most a dozen or so wordslong, averaging about 2.5 words in a sample of clueswe've collected.To solve a crossword puzzle by computer, we assumethat we have both the grid and the clues in machinereadable form, ignoring the special formatting and un-usual marks that sometimes appear in crosswords. Thecrossword solving problem will be the task of return-ing a grid of letters, given the numbered clues and alabeled grid.In this work, we focus on American-style crosswords,as opposed to British-style or cryptic crosswords. Byconvention, all targets are at least 3 letters in lengthand long targets can be constructed by stringing mul-tiple words together: �Don't say another word [13]:buttonyourlip�. Each empty square in the grid mustbe part of a down target and an across target.As this is largely a new problem domain, distinctfrom crossword-puzzle creation (Ginsberg et al. 1990),we wondered how hard crossword solving really was.2Target appears in �xed-width font; all examples aretaken from our clue database. We will note the targetlength following sample clues in this paper to indicate acomplete speci�cation of the clue.



PuzzlesSource CWDB Train TestNew York Times (NYT) 792 10 70Los Angeles Times (LAT) 439 10 50USA Today (USA) 864 10 50Creator's Syndicate (CS) 207 10 50CrosSynergy Syndicate (CSS) 302 10 50Universal Crossword (UNI) 262 10 50TV Guide (TVG) 0 10 50Dell 969 0 0Riddler 764 0 0Other 543 0 0Total 5133 70 370Table 1: Our Crossword Database (CWDB) was drawnfrom a number of machine-readable sources.To gain some insight into the problem, we studied alarge corpus of existing puzzles. We collected 5133crossword puzzles from a variety of sources, summa-rized in Table 1. Several are online versions of dailyprint newspaper puzzles (The New York Times, TheLos Angeles Times, The USA Today, TV Guide), fromonline sites featuring puzzles (Dell, Riddler) or fromsyndicates speci�cally producing for the online medium(Creator's Syndicate, CrosSynergy Syndicate). Thesepuzzles constitute a crossword database (CWDB) ofaround 350,000 clue-target pairs, with over 250,000of them unique, which served as a potent knowledgesource for this project.NoveltyHuman solvers improve with experience, in part be-cause particular clues and targets tend to recur. Forexample, many human solvers will recognize �GreatLake [4]: erie� to be a common clue-target pair inmany puzzles3. Our CWDB corresponds to the num-ber of puzzles that would be encountered by a humanover a fourteen-year period, at a rate of one puzzle aday.What percentage of targets and clues in a new puz-zle presented to our system will be in the existingdatabase|how novel are crossword puzzles? In Fig-ure 1, we graph the probability of novel targets, clues,clue-target pairs, and clue words as we increase thenumber of elements in the database.After randomizing, we looked at subsets of thedatabase ranging from 5,000 clues to almost 350,000.For each subset, we calculated the percentage of theparticular item (target, clue, clue-target, clue word)that are unique. This is an estimate for the likeli-3The �ve most common targets in the database are era,ore, area, erie and ale. The target erie appears in over7% of puzzles. The �ve most common clues are \Exist,"\Greek letter," \Jai ," \Otherwise," and \Region". The�ve most common clue-target pairs are �Exist [3]: are�,�Jai [4]: alai�, �Otherwise [4]: else�, �Region [4]:area�, and �Anger [3]: ire�.
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Clue WordFigure 1: Clue and target novelty decreases with thesize of the CWDB. Given all 350,000 clues, we wouldexpect a new puzzle to contain 34% previously seenclue-target pairs.hood of the next item being novel. Given the completedatabase (344,921 clues) and a new puzzle, we wouldexpect to have seen 91% of targets, 50% of clues, and34% of clue-target pairs. We would also expect to haveseen 96% of the words appearing in the clues. TheCWDB clearly contains a tremendous amount of use-ful domain-speci�c information.The New York Times Crossword PuzzleThe New York Times (NYT) crossword is consideredby many to be the premiere daily puzzle. NYT editorsattempt to make the puzzles increase in di�culty fromeasy on Monday to very di�cult on Saturday and Sun-day. We hoped that studying the Monday-to-Saturdaytrends in the puzzles might provide insight into whatmakes a puzzle hard for humans.In Table 2, we show how the distributions of cluetypes change day by day. For example, note that some\easier" clues, such as �ll-in-the-blank clues �Mai[3]: tai�) get less and less common as the weekgoes on. In addition, clues with a trailing questionmark (�T.V. Series? [15]: sonyrcamagnovox�), whichis often a sign of a themed or pun clue, get more com-mon. The distribution of target lengths also varies,with words in the 6 to 10 letter range becoming muchmore common from Monday to Saturday. Sunday isnot included in the table as it is a bit of an outlier onsome of these scales, partly due to the fact that thepuzzles are larger (up to 23�23, as opposed to 15�15for the other days).Categories of CluesIn the common syntactic categories shown in Table 2,such as �ll-in-the-blank and quoted phrases, clue struc-ture leads to simple ways to answer those clues. Forexample, given the clue � miss [5]: hitor�, we



Mon Tue Wed Thu Fri Sat#puz 89 92 90 91 91 87#clues 77.3 77.2 76.7 74.7 70.0 70.23 16.5 18.2 17.5 18.6 17.3 16.34{5 64.6 61.1 62.5 54.7 44.2 40.26{10 15.8 17.7 16.9 23.1 35.2 41.711{15 3.1 2.9 3.2 3.7 3.3 1.9Blank 8.4 8.0 6.4 6.4 5.2 4.8Blank & \ " 3.1 3.1 2.7 2.2 2.0 1.7Single Word 15.6 14.9 16.0 17.2 16.9 20.6(Year) 1.4 1.6 1.9 2.1 2.5 2.7Final `?' 0.8 1.2 2.5 3.2 3.5 2.6X, in a way 0.0 0.1 0.2 0.4 0.6 0.8Table 2: NYT clue statistics vary by day of week.might scan through text sources looking for all 9-letterphrases that match on word boundaries and known let-ters. If encounter a clue such as�Map abbr. [3]: rte�,we might want to return a list of likely abbreviations.In addition, a number of non-syntactic, expert cat-egories stand out, such as synonyms (�Covered [5]:awash�), kind-of (�Kind of duck or letter [4]: dead�),movies (�1954 mutant ants �lm [4]: them�), geogra-phy (�Frankfurt's river [4]: oder�), music (�`Upsidedown' singer [4]: ross�) and literature (�Carroll char-acter [5]: alice�).There are also clues that do not �t simple pattern,but might be solved by existing information retrievaltechniques (�Nebraska tribesman [4]: otoe�). Giventhe many di�erent sources of information that can bebrought to bear to solve di�erent types of clues, thissuggests a two-stage architecture for our solver: oneconsisting of a collection of special-purpose and generalcandidate-generation modules, and one that combinesthe results from these modules to generate a solution tothe puzzle. This decentralized architecture allowed arelatively large group of contributors (approximatelyten people) to contribute modules using techniquesranging from generic word lists to highly speci�c mod-ules, from string matching to general-purpose informa-tion retrieval. The next section describes Proverb'smodular design. ArchitectureFigure 2 illustrates the components of Proverb.Given a puzzle, the Coordinator separates the cluesfrom the grid and sends a copy of the clue list (withtarget lengths) to each Expert Module. The expertmodules generate probability-weighted candidate lists,in isolation from the other grid constraints. Expertmodules are free to return no candidates for any clues,or 10,000 for every one. The collection of candidatelists is then reweighted by the Merger to compensatefor di�erences in module weighting, and combined intoa single list of candidates for each clue. Finally, theSolver takes these weighted lists and searches for thebest solution it can �nd that also satis�es the grid con-
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Figure 2: Proverb consists of a set of independentcommunicating programs written in Java, C, C++,and Perl.straints.The Implicit Distribution Modules are used by thesolver, and are described in a later section.The Probabilistic ModelTo unify the candidate-generation modules, it is im-portant to �rst understand our underlying assump-tions about the crossword-puzzle problem. First, as-sume that crossword puzzles are created by repeat-edly choosing words for the slots according to a par-ticular creator's distribution (ignore clues and cross-ing constraints for now). After choosing the words,if the crossing constraints are satis�ed, then the cre-ator keeps the puzzle. Otherwise, the creator drawsagain. Normalizing to account for all the illegal puz-zles generated gives us a probability distribution overlegal puzzles.Now, suppose that for each slot in a puzzle, we hada probability distribution over possible words for theslot given the clue. Then, we could try to solve oneof a number of probabilistic optimization problems toproduce the \best" �ll of the grid. In our work, we de-�ne \best" as the puzzle with the maximum expectednumber of targets in common with the creator's solu-tion: the maximum expected overlap. We will discussthis optimization more in a following section, but fornow it is important only to see that we would like tothink of candidate generation as establishing probabil-ity distributions over possible solutions.We will next discuss how individual modules can cre-ate approximations to these distributions, how we cancombine them into a uni�ed distributions, and then �-nally how we can search to �nd a good solution to theoptimization problem.Candidate-List GenerationThe �rst step is to have each module generate can-didates for each clue, given the target length. Eachmodule returns a con�dence score (how sure it is that



the answer lies in its list), and a weighted list of pos-sible answers. For example, given the clue �Farrow of`Peyton Place' [3]: mia�, the movie module returns:1.0: 0.909091 mia, 0.010101 tom, 0.010101 kip, � � �� � �, 0.010101 ben, 0.010101 peg, 0.010101 rayThe module returns a 1.0 con�dence in its list, andgives higher weight to the person on the show with thegiven last name, while giving lower weight to other castmembers.Note that most of the modules will not be able togenerate actual probabilities distributions for the tar-gets, and will need to make approximations. The merg-ing step discussed next will attempt to account for theerror in these estimates by testing on training data,and adjusting scaling parameters to compensate. It isimportant for modules to be consistent, and to givemore likely candidates more weight. Also, the bet-ter control a module exerts over the overall con�dencescore when uncertain, the more the merger will \trust"the module's predictions.In all, we built 30 di�erent modules, many of whichare described brie
y below. To get some sense of thecontribution of the major modules, Table 3 summa-rizes performance on 70 puzzles, containing 5374 clues.These puzzles were drawn from the same sources asthe test puzzles, ten from each. For each module, welist several measures of performance: the percentageof clues that the module guessed at, the percentageof the time the target was in the module's candidatelist, the average length of the returned lists, and thepercentage of clues the module \won"|it had the cor-rect answer weighted higher than all other modules.This �nal statistic is an important measure of the mod-ule's contribution to the system. For example, theWordList-Big module generates over 100,000 words forsome clues, so it often has the target in its list (97%of the time). However, since it generates so many, theindividual weight given to the target is usually lowerthan that assigned by other modules, and, thus, it isthe best predictor only 0.1% of the time.Another way of looking at the contribution of themodules is to consider the probability assigned to eachtarget given the clues. Ideally, we would like all targetsto have probability 1. In general, we want to maxi-mize the product of the probabilities assigned to thetargets, since this quantity is directly related to whatthe solver will be maximizing. In Figure 3, the topline represents the probability assigned by the Bigrammodule (described later). This probability is low forall targets, but very low for the hard targets. As weadd groups of modules, the e�ect on the probabilitiesassigned to targets can be seen as a lowering of thecurve, which corresponds to assigning more and moreprobability to the target. Note the large increase dueto the Exact Match module. Finally, notice that thereis a small segment that we do very poorly on|the tar-gets that no module other than Bigram returns. We
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Figure 3: The cumulative probability assigned as mod-ule groups are added shows that di�erent types of mod-ules make di�erent contributions. Each line is sortedindependently.will later introduce extensions to the system that helpwith this range.Word List ModulesWordList, WordList-Big These modules ignoretheir clues and return all words of the correct lengthfrom several dictionaries. WordList contains a listof 655,000 terms from a wide variety of sources, in-cluding online texts, enclyopedias and dictionaries.WordList-Big contains everything in WordList, aswell as many constructed `terms', produced by com-bining related entries in databases. This includescombining �rst and last names, as well as mergingadjacent words from clues in the CWDB. WordList-Big contains over 2.1 million terms.WordList-CWDB WordList-CWDB contains the58,000 unique targets in the CWDB, and returns alltargets of the appropriate length, regardless of theclue. It weights them with estimates of their \prior"probabilities as targets of arbitrary clues.CWDB-Speci�c ModulesExact Match This module returns all targets ofthe correct length associated with this clue in theCWDB. Con�dence is based on a Bayesian calcula-tion involving the number of exact matches of correctand incorrect lengths.Transformations This module learns a set of textualtransformations which, when applied to clue-targetpairs in the CWDB, generates other clue-target pairsin the database. When faced with a new clue, itapplies all applicable transformations and returnsthe results, weighted based on the previous preci-sion/recall of these transformations. Transforma-tions in the database include single-word substitu-tion, removing one phrase from the beginning or endof a clue and adding another phrase to the beginning



Module Guess Acc Len BestBigram 100.0 100.0 - 0.1WordList-Big 100.0 97.2 � 105 1.0WordList 100.0 92.6 � 104 1.7WordList-CWDB 100.0 92.3 � 103 2.8ExactMatch 40.3 91.4 1.3 35.9Transformation 32.7 79.8 1.5 8.4KindOf 3.7 62.9 44.7 0.8Blanks-Books 2.8 35.5 43.8 0.1Blanks-Geo 1.8 28.1 60.3 0.1Blanks-Movies 6.0 71.2 35.8 3.2Blanks-Music 3.4 40.4 39.9 0.4Blanks-Quotes 3.9 45.8 49.6 0.1Movies 6.3 66.4 19.0 2.2Writers 0.1 100.0 1.2 0.1Compass 0.4 63.6 5.9 0.0Geography 1.8 25.3 322.0 0.0Myth 0.1 75.0 61.0 0.0Music 0.9 11.8 49.3 0.0WordNet 42.8 22.6 30.0 0.9WordNetSyns 11.9 44.0 3.4 0.9RogetSyns 9.7 42.9 8.9 0.4MobySyns 12.0 81.6 496.0 0.4Encyclopedia 97.9 32.2 262.0 1.3LSI-Ency 94.7 43.8 995.0 1.0LSI-CWDB 99.1 77.6 990.0 1.2PartialMatch 92.6 71.0 493.0 8.1Dijkstra1 99.7 84.8 620.0 4.6Dijkstra2 99.7 82.2 996.0 8.7Dijkstra3 99.5 80.4 285.0 13.3Dijkstra4 99.5 80.8 994.0 0.1Table 3: Performance on 70 puzzles (5374 clues) showsdi�erences in the number of targets returned (Len)and contribution to the overall lists (Best). Also mea-sured but not shown are the implicit modules.or end of the clue, depluralizing a word in the clueand pluralizing the associated target, and others.The following is a list of several non-trivial exam-ples from the tens of thousands of transformationslearned:nice X $ X in france X starter $ pre�x with XX for short $ X abbr X city $ X capitalInformation Retrieval ModulesCrossword clues present an interesting challengeto traditional information retrieval (IR) techniques.While queries of similar length to clues have been stud-ied, the \documents" to be returned are quite di�er-ent (words or short sequences of words). In addition,the queries themselves are often purposely phrased tobe ambiguous, and never share words with the \doc-uments" to be returned. Despite these di�erences, itseemed natural to try a variety of existing IR tech-niques over several document collections.Encyclopedia This module is based on an indexedset of encyclopedia articles. For each query term,we compute a distribution of terms \close" to the

query term in the text. A term is counted 10 � ktimes in this distribution for every time it appearsat a distance of k < 10 words away from the queryterm. A term is also counted once if it appears inan article for which the query term is in the title,or vice versa. Terms of the correct target length areassigned scores proportional to their frequencies inthe \close" distribution, divided by their frequencyin the corpus. The distribution of scores is normal-ized to 1. If a query contains multiple terms, thescore distributions are combined linearly accordingto the log inverse frequency of the query terms in thecorpus. If the query contains very common termssuch as \as" and \and," they are ignored.Partial Match Consider the standard vector spacemodel (Salton & McGill 1983), de�ned by a vec-tor space with one dimension for every word inthe dictionary. A clue is represented as a vectorin this space. For each word w a clue contains,it gets a component in dimension w of magnitude� log(frequency(w)).For a clue c, we �nd all clues in the CWDB thatshare words with c. For each such clue, we giveits target a weight based on the dot product of theclue with c. The assigned weight is geometricallyinterpolated between 1=size(dictionary) and 1 basedon this dot product.LSI Latent semantic indexing (LSI) is an extension ofthe vector space model that uses singular value de-composition to identify correlations between words.LSI has been successfully applied to the problem ofsynonym selection on a standardized test (Landauer& Dumais 1997), which is closely related to solvingcrossword clues. Our LSI modules were trained onCWDB (all clues with the same target were treatedas a document) and separately on an online ency-clopedia and returned the closest words (by cosine)with each clue.Dijkstra Modules The Dijkstra modules were in-spired by the intuition that related words eitherco-occur with one another or co-occur with simi-lar words. This suggests a measure of relatednessbased on graph distance. From a selected set of textdatabases, the module builds a weighted directedgraph on the set of all terms. For each databased and each pair of terms (t; u) that co-occur in thesame document, we place an edge from t to u in thegraph with weight,� log�# documents in d containing t and u# documents in d containing t � :For a one-word clue t, we assign a term u ascore of � log(fraction of documents containing t)�weight(minimum weight path t! u).We �nd the highest scoring terms with a shortest-path-like search. For a multi-word clue, we breakthe clue into individual terms and add the scores as



computed above. The four Dijkstra modules in oursystem use variants of this technique.For databases, we used an encyclopedia index, twothesauri, a database of wordforms and the CWDB.Database ModulesMovie The Internet Movie Database (www.imdb.com)is an online resource with a wealth of informationabout all manner of movies and T.V. shows. Thismodule looks for a number of patterns in the clue(e.g. quoted titles as in �`Alice' star Linda [5]:lavin�, or Boolean operations on names as in�Cary or Lee [5]: grant�), and formulates queriesto a local copy of the database in a variety of forms.Music, Literary, Geography These modules usesimple pattern matching of the clue (looking forkeywords \city", \author",\band" and others as in�Iowa city [4]: ames�) to formulate a query to atopical database. The literary database is culledfrom both online and encyclopedia resources. Thegeography database is from the Getty InformationInstitute, with additional data supplied from onlinelists.Synonyms There are four distinct synonym mod-ules, based on three di�erent thesauri. Using theWordNet (Miller et al. 1990) database, one modulelooks for root forms of words in the clue, and then�nds a variety of related words (e.g. �Stroller [6]:gocart�). In addition, a type of relevance feed-back is used to generate lists of synonyms of syn-onyms. Finally, if necessary, the forms of the re-lated words are coverted back to the form of theoriginal clue word (number, tense, etc.), for example�Contrives [7]: devises�.Syntactic ModulesFill-in-the-Blanks Over �ve percent of all clues inCWDB have a blank in them. We searched a vari-ety of databases to �nd clue patterns with a miss-ing word (music, geography, movies, literary andquotes). For example, given �`Time My Side'(Stones hit) [4]: ison�, these modules would searchfor the pattern time .... my side, allowing anyfour charaters to �ll the blanks, including multiplewords. In some of our pretests we also ran thesesearches over more general sources of text like ency-clopedias and archived news feeds, but for e�ciency,we left these out of the �nal runs.KindOf \Kind of" clues are similar to �ll-in-the-blank clues in that they involve pattern matchingover short phrases. We identi�ed over 50 cues thatindicate a clue of this type, for example, \starter for"(�Starter for saxon [5]: anglo�), and \su�x with"(�Su�x with switch or sock [4]: eroo�).Merging Candidate ListsAfter each expert module has generated a weightedcandidate list, we must somehow merge these into a

uni�ed candidate list with a common weighting schemefor the solver. This problem is similar to the problemfacing meta-crawler search engines in that separatelyweighted return lists must be combined in a sensibleway. An advantage of this domain is ready access toprecise and abundant training data.For a given clue, each expert module m returns aweighted set of candidates and a numerical level ofcon�dence that the correct target is in this set. Foreach expert module m, we set three real parameters:scale(m), length-scale(m) and spread(m). For eachclue, we reweight the candidate set by raising eachweight to the power spread(m), then normalizing theirsum to 1. We multiply the con�dence level by theproduct of scale(m) and length-scale(m)targetlength. Tocompute our combined probability distribution overcandidates, we linearly combine the modi�ed candi-date sets of all the modules weighted by their modi�edcon�dence levels, and normalize the sum to 1.The scale, length-scale and spread parameters givethe merger control over how the information returnedby an expert module is incorporated into the �nal can-didate list. We set these parameters using a naive hill-climbing technique.The objective function for optimization is the aver-age log probability assigned to the correct target. Thiscorresponds to maximizing the average log probabilityassigned by the solver to the correct puzzle �ll-in, sincein our model the probability of a puzzle solution is pro-portional to the product of the prior probabilities onthe answers in each of the slots. The optimal value weachieve on the 70 puzzle training set is log( 133:56 ).Grid FillingAfter realizing how much repetition occurs in cross-words, in both targets and clues, and therefore howwell the CWDB covers the domain, one might wonderwhether this coverage is enough to constrain the do-main to such an extent that there is not much for thegrid-�lling algorithm to do. We did not �nd this to bethe case. Simplistic grid �lling yielded only mediocreresults. As a measure of the task left to the grid-�llingalgorithm, on the �rst iteration of solving, using justthe weighted candidate lists from the modules, only40.9% of targets are in the top of the candidate list fortheir slot. However, the grid-�lling algorithm is ableto raise this to 89.4%.4The algorithm employed by Proverb (Shazeer,Littman, & Keim 1999) models grid �lling as an opti-mization problem. In particular, the across and downletter intersections establish constraints on how thegrid can be �lled, and crossword-puzzle �lling is oftencited as a constraint satisfaction problem. However,in our case, we don't just want to �nd any satisfy-ing set of candidates for the slots; we want the \best"�t. We can de�ne \best" in several di�erent ways, but4On average, over the 70 NYT puzzles in the test suite.



in these tests we attempted to maximize the expectedoverlap with the creator's solution, in terms of wordscorrect. Other de�nitions of \best" include maximiz-ing the probability of getting the entire puzzle correct,or maximizing expected letter overlap. The decisionto use expected word overlap is motivated by the scor-ing system used in human tournaments (see below).Since �nding the optimal solution to this problem isintractable, we employ a variety of e�cient approxi-mations.Implicit Distribution ModulesOur probability measure assigns probability zero to atarget that is suggested by no module and probabilityzero to all solutions containing that target. There-fore, we need to assign non-zero probability to all let-ter sequences. Clearly, there are too many to actu-ally list explicitly. We augmented the solver to reasonwith probability distributions over candidate lists thatare implicitly represented. These Implicit DistributionModules generate additional candidates once the solvercan give them more information about letter probabil-ity distributions over the slot.The most important of these is a letter Bigram mod-ule, which \generates" all possible letter sequences ofthe given length by returning a letter bigram distribu-tion over all possible strings, learned from the CWDB.Because the bigram probabilities are used throughoutthe solution process, this module is actually tightly in-tegrated into the solver itself.Note in Figure 3 that there are some clues forwhich no module except Bigram is returning the tar-get. In a pretest run on 70 puzzles, the clue-targetwith the lowest probability was �Honolulu wear [14]:hawaiianmuumuu�. This target never occurs in theCWDB, although both muumuu and hawaiian occurmultiple times, and it gets a particularly low proba-bility because of the many unlikely letter pairs in thetarget. Once the grid-�lling process is underway, wehave probability distributions for each letter in theselonger targets and this can limit our search for candi-dates.To address longer, multiword targets, we createdfree-standing implicit distribution modules. Each im-plicit distribution module takes a letter probabilitydistribution for each letter of the slot (computedwithin the solver), and returns weighted candidatelists. These lists are then added to the previous can-didate lists, and the grid-�lling algorithm continues.This process of getting new candidates can happen sev-eral times during the solution process.Tetragram The tetragram module suggests candi-dates based on a letter tetragram model, built fromthe WordList-Big. We hoped this would provide abetter model for word boundaries than the bigrammodel mentioned above, since this list contains manymultiword terms.

Segmenter The segmenter calculates the n mostprobable word sequences with respect to both theletter probabilities and word probabilities from sev-eral sources (n = 10 currently) using dynamic pro-gramming. The base word probabilities are uni-gram word probabilities from the CWDB. In addi-tion, the Dijkstra module (described above) suggeststhe best 1000 words (with weights) given the currentclue. These weights and the unigram probabilitiesare then combined for a new distribution of wordprobabilities.For example, consider the clue �Tall footwearfor rappers? [11]: hiphopboots�. Given a letterdistribution and a combined word distribution,the segmenter returned the following top tenduring: tiptopboots, hiphoproots, hiphopbooks,hiphoptoots, hiphopboots, hiphoproofs,riptaproots, hippopboots, hiptaproots,hiptapboots. Note that the reweighting doneby the Dijkstra module by examining the clue raisesthe probabilites of related words like boots.ResultsTo evaluate Proverb's performance, we ran it on alarge collection of daily puzzles, and on the most recenthuman tournament puzzles.Daily PuzzlesWe tested the system on puzzles from seven dailysources, listed in Table 1. The TV Guide puzzles goback to 1996, but the other sources were all from be-tween August and December of 1998. We selected 70puzzles, 10 from each source, as training puzzles forthe system. The reweighting process described abovewas trained on the 5374 clues from these 70 puzzles.Additional debugging and modi�cation of the moduleswas done after evaluation on these training puzzles.Having �xed the modules and reweighting param-eters, we then ran the system on the 370 puzzles inthe �nal pool. The system acheived an average 95.3%words correct, 98.1% letters correct, and 46.2% puzzlescompletely correct (94.1%, 97.6%, and 37.6% withoutthe implicit distribution modules).In Figure 4, we plot the scores on each of the 370daily puzzles attempted by Proverb, grouped by thesource. In addition, we split the NYT puzzles intotwo groups: Monday through Wednesday (MTW), andThursday through Sunday (TFSS). As noted earlier,there is an e�ort made at the NYT to make puz-zles increasingly di�cult as the week progresses, andwith respect to Proverb's performance they have suc-ceeded.55In some of our earlier tests, there appeared to be a �nerday-by-day trend from Monday to Saturday, but there isnot enough data in this set (10 per day) to see this.
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Figure 4: Proverb performance on a variety of dailycrossword puzzles.Tournament PuzzlesTo better gauge the system's performance againsthumans, we tested Proverb using puzzles fromthe 1998 American Crossword Puzzle Tournament(ACPT) (Shortz 1990). The ACPT has been held an-nually for 20 years, and was attended in 1998 by 251people. The scoring system for the ACPT requires thata time limit be set for each puzzle. A solver's scoreis then 10 times the number of words correct, plus abonus of 150 if the puzzle is completely correct. Inaddition, the number of incorrect letters is subtractedfrom the full minutes early the solver �nishes. If thisnumber is positive, it is multiplied by 25 and added tothe score.There were seven puzzles in the o�cal contest, withtime limits ranging from 15 to 45 minutes. We usedthe same version of Proverb described in the previoussection. The results over the 1998 puzzles are shownin Table 4. The best human solvers at the competi-tion �nished all puzzles correctly, and the winner wasdetermined by �nishing time (the champion averagedunder seven minutes per puzzle). Thus, while not com-petitive with the very best human solvers, Proverbwould have placed 213 out of 252; its score on Puz-zle 5 exceeded that of the median human solver at thecontest.The ACPT puzzles are very challenging, and includetricks like multiple letters or words written in a singlegrid cell, and targets written in the wrong slot. In spiteof the fact that Proverb could not produce answersthat bend the rules in this way, it still correctly �lledin 80% of the words correctly, on average. The implicitdistribution modules (\Proverb(I)") helped improvethe word score on these puzzles, but brought down thetournament score because it works more slowly.

AvgName Rank Total Time. TP (Maximum) 1 13140 1:00TP (Champion) 1 12115 6:51JJ (75%) 62 10025 -MF (50%) 125 8575 -MB (25%) 187 6985 -. Proverb-I (24%) 190 6880 1:00Proverb (15%) 213 6215 9:41Proverb-I (15%) 215 6130 15:07Table 4: Proverb compared to the 251 elite humancontestants at the 1998 championship. Lines precededby a . indicate the theoretical score if the solver didevery puzzle in under a minute.ConclusionsSolving crossword puzzles presents a unique arti�cialintelligence challenge, demanding from a competitivesystem broad world knowledge, powerful constraintsatisfaction, and speed. Because of the widespread ap-peal, system designers have a large number of existingpuzzles to use to test and tune their systems, and hu-mans with whom to compare.A successful crossword solver requires many arti-�cial intelligence techniques; in our work, we usedideas from state-space search, probabilistic optimiza-tion, constraint satisfaction, information retrieval, ma-chine learning and natural language processing. Wefound probability theory a potent practical tool for or-ganizing the system and improving performance.The level of success we acheived would probably nothave been possible �ve years ago, as we depended onextremely fast computers with vast memory and diskstorage, and used tremendous amounts of data in ma-chine readable form. Perhaps the time is ripe to usethese resources to attack other problems previouslydeemed too challenging for AI.AcknowledgementsWe received help and guidance from other membersof the Duke Community: Michael Fulkerson, MarkPeot, Robert Duvall, Fred Horch, Siddhartha Chat-terjee, Geo� Cohen, Steve Ruby, Nabil H. Mustafa,Alan Biermann, Donald Loveland, Gert Webelhuth,Robert Vila, Sam Dwarakanath, Will Portnoy, MichailLagoudakis, Steve Majercik, Syam Gadde. Via e-mail,Will Shortz and William Tunstall-Pedoe made consid-erable contributions.ReferencesGinsberg, M. L.; Frank, M.; Halpin, M. P.; and Tor-rance, M. C. 1990. Search lessons learned from cross-word puzzles. In Proceedings of the Eighth NationalConference on Arti�cial Intelligence, 210{215.Landauer, T. K., and Dumais, S. T. 1997. A solu-tion to Plato's problem: The latent semantic analysis
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