CE 573: Artificial Intelligence

Autumn 2010

Lecture 3: A* Search 10/7/2010

Luke Zettlemoyer

Based on slides from Dan Klein

Multiple slides from Stuart Russell or Andrew Moore

Announcements

Projects:

- Project 1 (Search) is out, due next Friday Oct15th
- You don't need to submit answers the project's discussion questions
- Can talk to each other, but must write own solutions

Today

A* Search

Heuristic Design

Graph search

Recap: Search

Search problem:

- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

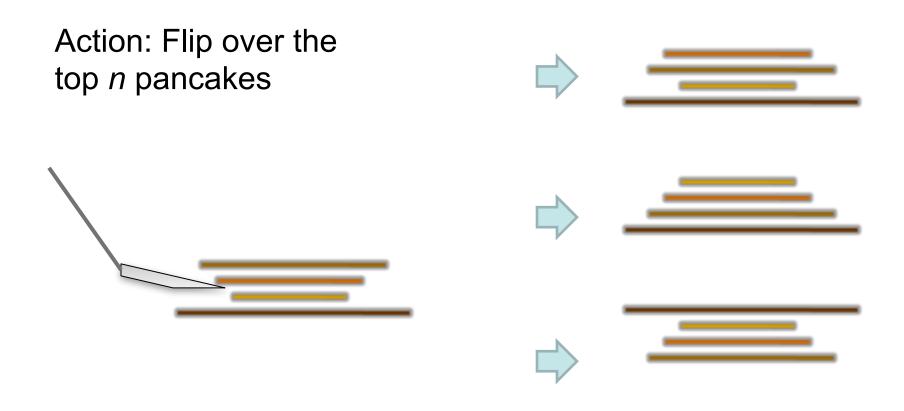
Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem



Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

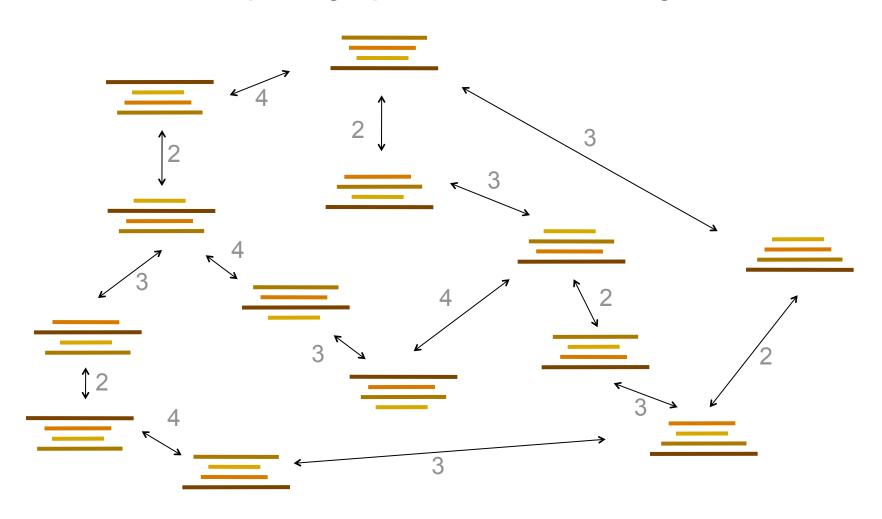
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

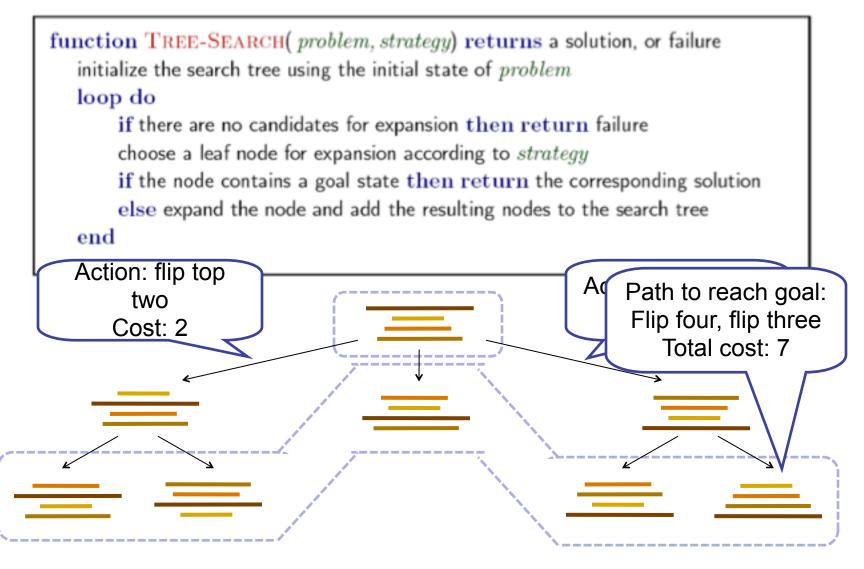
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights

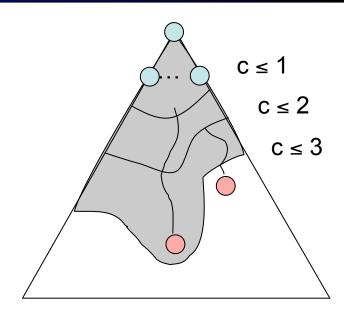


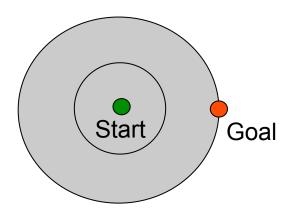
General Tree Search



Uniform Cost Search

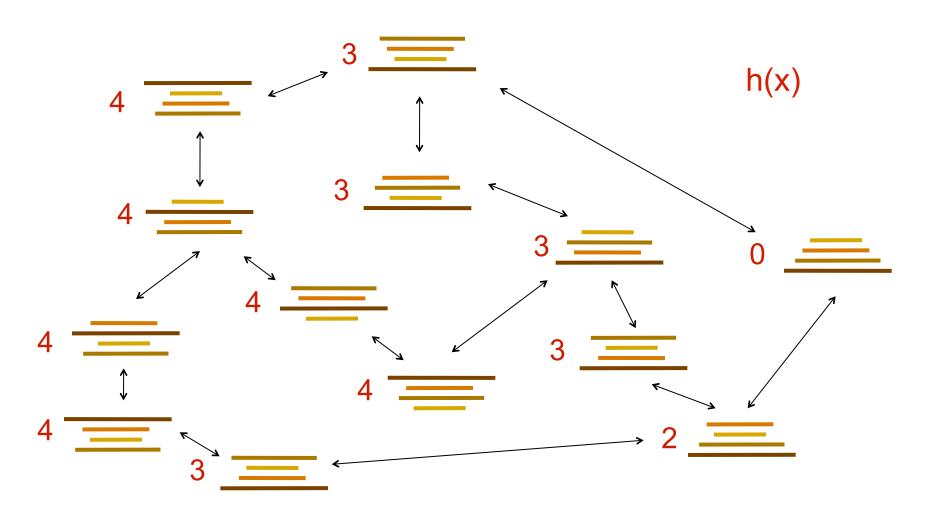
- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location





Example: Heuristic Function

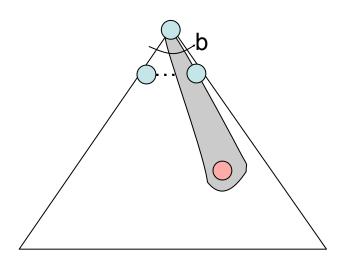
Heuristic: the largest pancake that is still out of place

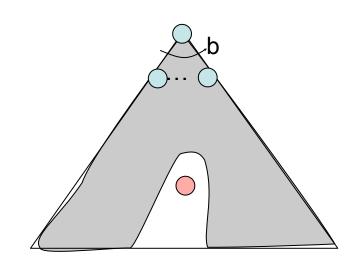


Best First (Greedy)

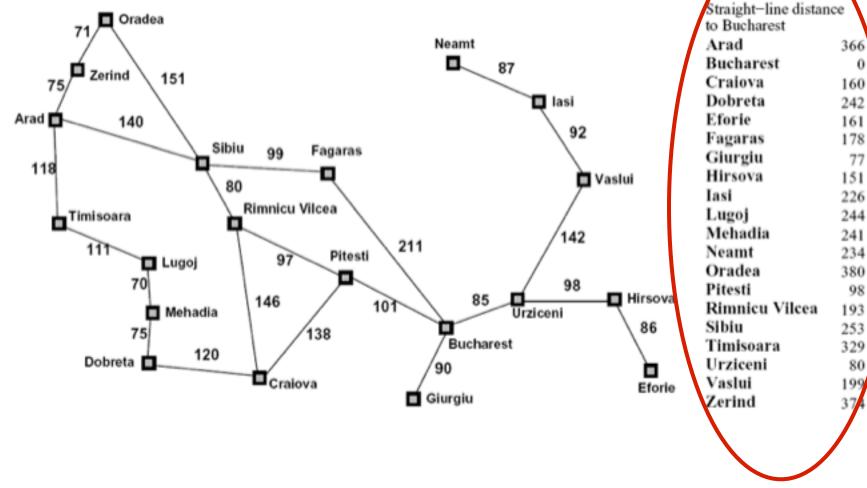
- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS



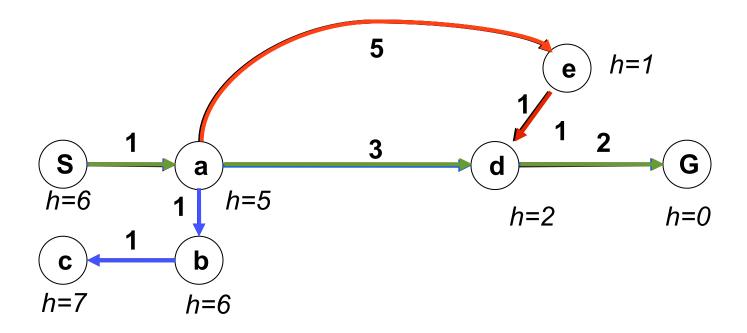


Example: Heuristic Function



Combining UCS and Greedy

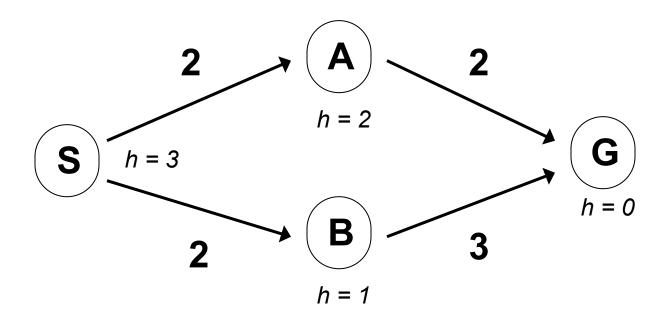
- Uniform-cost orders by path cost, or backward cost g(n)
- Best-first orders by goal proximity, or forward cost h(n)
- A* Search orders by the sum: f(n) = g(n) + h(n)



Example: Teg Grenager

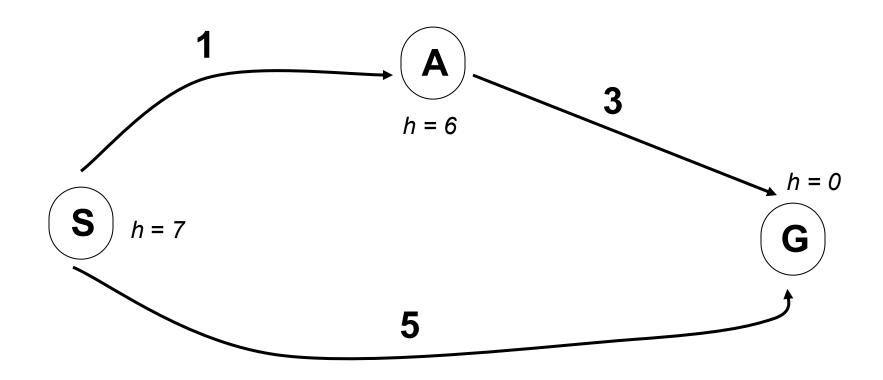
When should A* terminate?

Should we stop when we enqueue a goal?



No: only stop when we dequeue a goal

Is A* Optimal?



- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

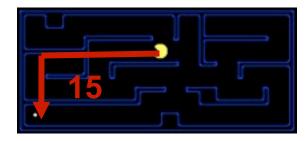
Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

Examples:

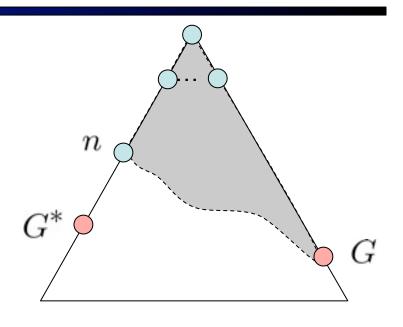


 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A*: Blocking

Notation:

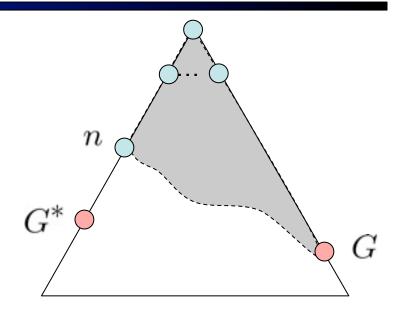
- g(n) = cost to node n
- h(n) = estimated cost from n
 to the nearest goal (heuristic)
- f(n) = g(n) + h(n) =estimated total cost via n
- G*: a lowest cost goal node
- G: another goal node



Optimality of A*: Blocking

Proof:

- What could go wrong?
- We'd have to have to pop a suboptimal goal G off the fringe before G*
- This can't happen:
 - For all nodes n on the best path to G*
 - f(n) < f(G)
 - So, G* will be popped before G



$$f(n) = g(n) + h(n)$$

$$g(n) + h(n) \le g(G^*)$$

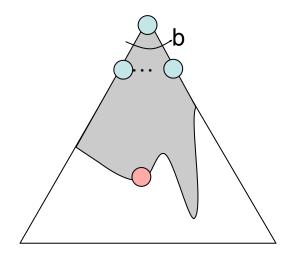
$$g(G^*) < g(G)$$

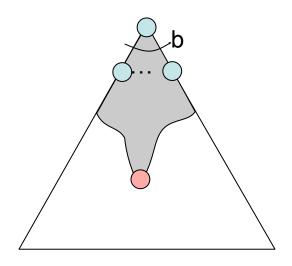
$$g(G) = f(G)$$

$$f(n) < f(G)$$

Properties of A*

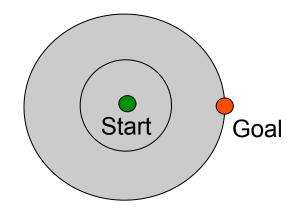
Uniform-Cost



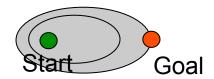


UCS vs A* Contours

 Uniform-cost expanded in all directions

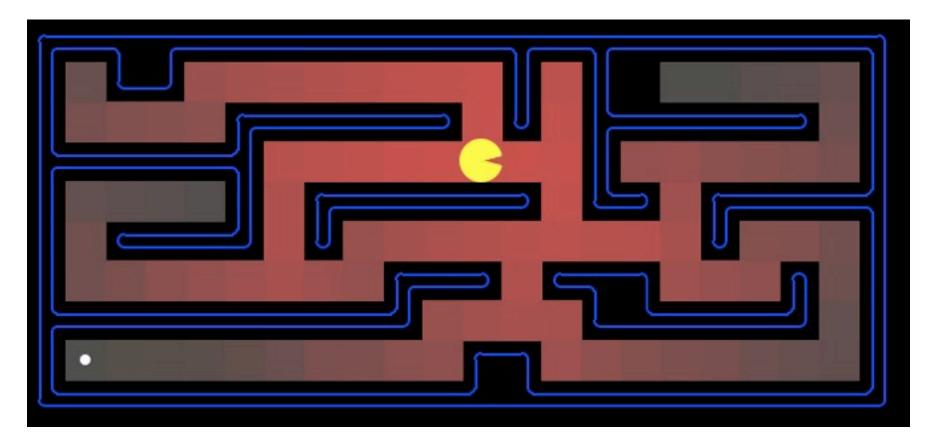


 A* expands mainly toward the goal, but does hedge its bets to ensure optimality



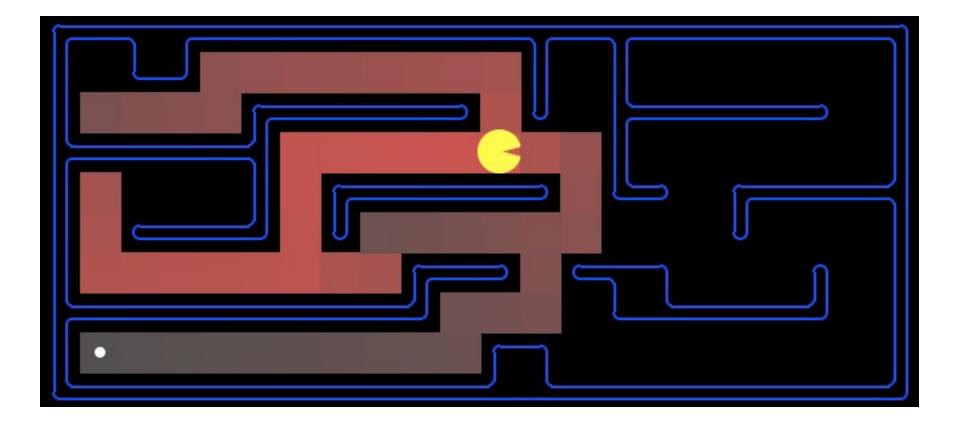
Which Algorithm?

Uniform cost search (UCS):



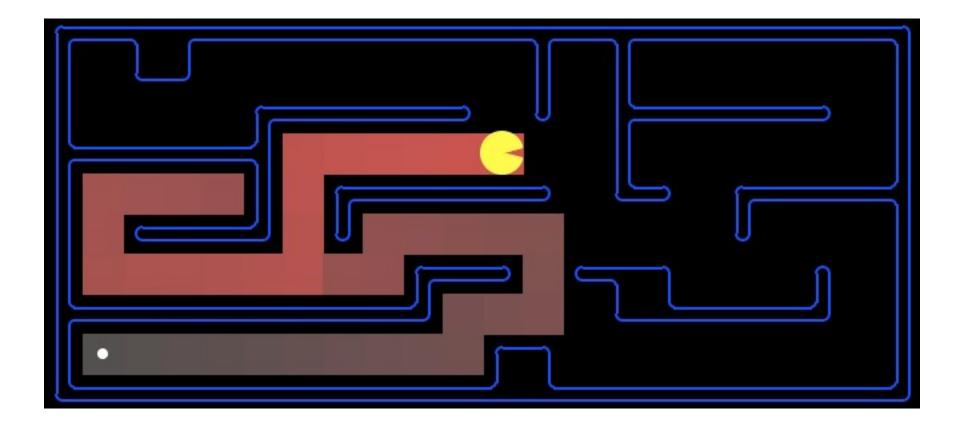
Which Algorithm?

A*, Manhattan Heuristic:



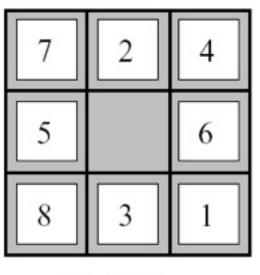
Which Algorithm?

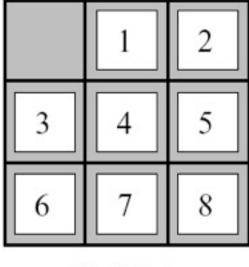
Best First / Greedy, Manhattan Heuristic:



Creating Heuristics

8-puzzle:





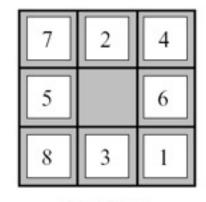
Start State

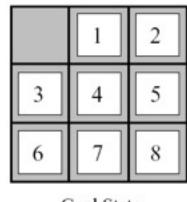
Goal State

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

 Heuristic: Number of tiles misplaced





h(start) = 8

Start State

Goal State

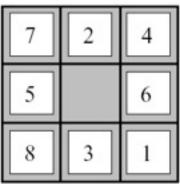
Is it admissible?

	Average nodes expanded when optimal path has length				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- h(start) =3 + 1 + 2 + ...= 18

Admissible?



	1	2
3	4	5
6	7	8

Goal State

	Average nodes expanded when optimal path has length			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

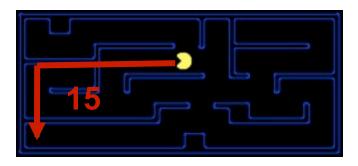
8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

With A*: a trade-off between quality of estimate and work per node!

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available



Inadmissible heuristics are often useful too (why?)

Trivial Heuristics, Dominance

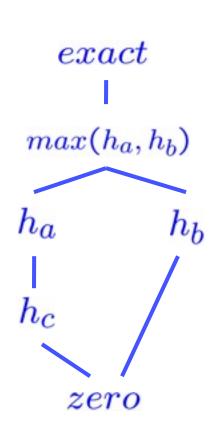
■ Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic



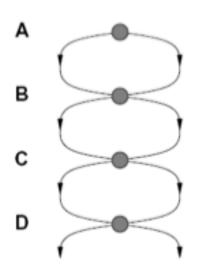
A* Applications

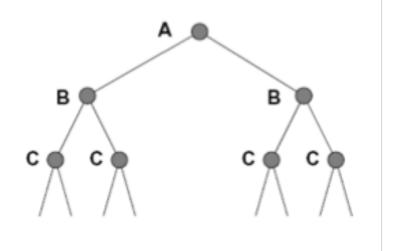
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

• ...

Tree Search: Extra Work!

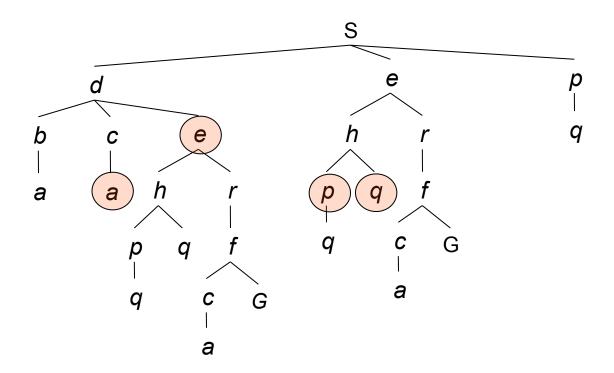
Failure to detect repeated states can cause exponentially more work. Why?





Graph Search

 In BFS, for example, we shouldn't bother expanding some nodes (which, and why?)



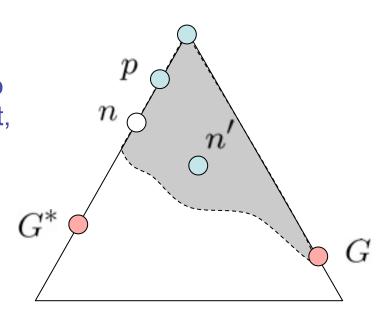
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + list of expanded states (closed list)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
 - Python trick: store the closed list as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Optimality of A* Graph Search

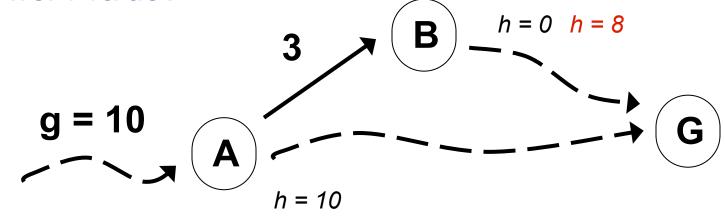
Proof:

- New possible problem: nodes on path to G* that would have been in queue aren't, because some worse n' for the same state as some n was dequeued and expanded first (disaster!)
- Let p be the ancestor which was on the queue when n' was expanded
- Assume f(p) < f(n)
- f(n) < f(n') because n' is suboptimal
- p would have been expanded before n'
- Also, n would have been expanded before n'



Consistency

- Wait, how do we know parents have better f-values than their successors?
- Could we pop some node n, and find its child n' to have lower f value?



- What can we require to prevent these inversions?
- Consistency: $c(n, a, n') \ge h(n) h(n')$
- Real cost must always exceed reduction in heuristic

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and nonnegative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, natural admissible heuristics tend to be consistent

Summary: A*

 A* uses both backward costs and (estimates of) forward costs

A* is optimal with admissible heuristics

Heuristic design is key: often use relaxed problems

To Do:

- Keep up with the readings
- Get started on PS1
 - it is long; start soon
 - due in about a week