CSE 573: Artificial Intelligence Autumn 2010

Lecture 12: HMMs / Bayesian Networks 11/9/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic sequence models (and inference)
 - (Review) Hidden Markov Models
 - (Review) Particle Filters
 - (Postponed) Most Probable Explanations
 - Dynamic Bayesian networks
 - Bayesian Networks (BNs)
 - Independence in BNs

Announcements

- We are still grading PS3
- PS4 out, due next Monday
- Mini-project guidelines out this week
- Exam next Thursday
 - In class, closed book, one page of notes
- Look at Berkley exams for practice:
 - http://inst.eecs.berkeley.edu/~cs188/ fa10/midterm.html

Recap: Reasoning Over Time

Stationary Markov models

$$X_1$$
 X_2 X_3 X_4 X_4

$$P(X_1)$$
 $P(X|X_{-1})$

Hidden Markov models

X	Ш	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	8.0

Recap: Hidden Markov Models

Defines a joint probability distribution:

$$P(X_1, \dots, X_n, E_1, \dots, E_n) =$$

$$P(X_{1:n}, E_{1:n}) =$$

$$P(X_1)P(E_1|X_1) \prod_{t=2}^{N} P(X_t|X_{t-1})P(E_t|X_t)$$

Summary: Filtering

- Filtering is the inference process of finding a distribution over X_T given e₁ through e_T: P(X_T | e_{1:t})
- We first compute P($X_1 \mid e_1$): $P(x_1 \mid e_1) \propto P(x_1) \cdot P(e_1 \mid x_1)$
- For each t from 2 to T, we have $P(X_{t-1} | e_{1:t-1})$
 - Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

■ **Observe:** compute $P(X_t | e_{1:t-1}, e_t) = P(X_t | e_{1:t})$

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

Example: Run the Filter

An HMM is defined by:

• Initial distribution: $P(X_1)$

■ Transitions: $P(X_t|X_{t-1})$

• Emissions: P(E|X)

Recap: Filtering Example

Example Pac-man

Recap: Particle Filtering

- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
 - |X|² may be too big to do updates
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

Recap: Particle Filtering

At each time step t, we have a set of N particles / samples

- Initialization: Sample from prior, reweight and resample
- Three step procedure, to move to time t+1:
 - 1. Sample transitions: for each each particle *x*, sample next state

$$x' = \text{sample}(P(X'|x))$$

2. Reweight: for each particle, compute its weight given the actual observation e

$$w(x) = P(e|x)$$

3. Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x will have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3)

(3,2)

(2,1)

(3,3)

(3,3)

(2,1)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probs
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If we have enough samples, close to the exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:
 - We don't sample the observation, we fix it
 - We weight our samples based on the evidence

$$w(x) = P(e|x)$$
$$B(X) \propto P(e|X)B'(X)$$

 Note that, as before, the weights/ probabilities don't sum to one, since most have been downweighted (in fact they sum to an approximation of P(e))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Old Particles:

- (3,3) w=0.1
- (2,1) w=0.9
- (2,1) w=0.9
- (3,1) w=0.4
- (3,2) w=0.3
- (2,2) w=0.4
- (1,1) w=0.4
- (3,1) w=0.4
- (2,1) w=0.9
- (3,2) w=0.3

New Particles:

- (2,1) w=1
- (2,1) w=1
- (2,1) w=1
- (3,2) w=1
- (2,2) w=1
- (2,1) w=1
- (2,1) w-1
- (1,1) w=1
- (3,1) w=1
- (2,1) w=1
- (1,1) w=1

Recap: Particle Filtering

At each time step t, we have a set of N particles / samples

- Initialization: Sample from prior, reweight and resample
- Three step procedure, to move to time t+1:
 - 1. Sample transitions: for each each particle *x*, sample next state

$$x' = \text{sample}(P(X'|x))$$

2. Reweight: for each particle, compute its weight given the actual observation e

$$w(x) = P(e|x)$$

3. Resample: normalize the weights, and sample N new particles from the resulting distribution over states

Which Algorithm?

Particle filter, uniform initial belief, 300 particles

PS4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- He was blinded by his power, but could hear the ghosts' banging and clanging.
- Transition Model: All ghosts move randomly, but are sometimes biased
- Emission Model: Pacman knows a "noisy" distance to each ghost

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from t-1

Discrete valued dynamic Bayes nets are also HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the t=1 Bayes net
 - Example particle: $G_1^a = (3,3) G_1^b = (5,3)$
- Elapse time: Sample a successor for each particle
 - Example successor: $G_2^a = (2,3) G_2^b = (6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
 - Likelihood: $P(E_1^a|G_1^a) * P(E_1^b|G_1^b)$
- Resample: Select samples (tuples of values) in proportion to their likelihood weights

Model for Ghostbusters

- Reminder: ghost is hidden, sensors are noisy
- T: Top sensor is red

B: Bottom sensor is red

G: Ghost is in the top

• Queries:

Problem: joint distribution too large / complex

Joint Distribution

Т	В	G	P
+t	+ b	+g	0.16
+t	+ b	ſ	0.16
+t	D T	+ g	0.24
+t	р Г	ſ	0.04
−t	- b	+ g	0.04
−t	b	ſ	0.24
−t	ر م	+g	0.06
¬t	¬b	¬g	0.06

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example Bayes' Net: Car

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain independence assumptions
 - Compare to the exact decomposition according to the chain rule!

Example Bayes' Net: Insurance

Example: Independence

N fair, independent coin flips:

$$P(X_1, X_2, \dots X_n)$$
 2^n

Example: Coin Flips

N independent coin flips

 No interactions between variables: absolute independence

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: X ||| Y
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

$P_1(T,W)$

Η	W	Р
warm	sun	0.4
warm	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
warm	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

$P_2(T,W)$

Т	W	Р
warm	sun	0.3
warm	rain	0.2
cold	sun	0.3
cold	rain	0.2

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, ¬cavity) = P(+catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

$$X \perp \!\!\!\perp Y|Z$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
- What about fire, smoke, alarm?

Ghostbusters Chain Rule

 Each sensor depends only on where the ghost is

$$P(T,B,G) = P(G) P(T|G) P(B|G)$$

- That means, the two sensors are conditionally independent, given the ghost position
- T: Top square is red
 - B: Bottom square is red
 - G: Ghost is in the top
- Can assume:

T	В	G	P
+t	+ b	+ g	0.16
+t	+ b	g	0.16
+t	J	+ g	0.24
+t	٦	ſ	0.04
−t	d +	+g	0.04
−t	4	ſ	0.24
−t	¬b	+g	0.06
−t	¬b	Γд	0.06

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence
- Model 2: rain is conditioned on traffic
 - Why is an agent using model 2 better?
- Model 3: traffic is conditioned on rain
 - Is this better than model 2?

Example: Alarm Network

Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

В	P(B)
+b	0.001
¬b	0.999

A	J	P(J A)
+a	+j	0.9
+a	٦.	0.1
¬а	+j	0.05
¬а	¬j	0.95

A	M	P(M A)
+a	+m	0.7
+a	¬m	0.3
¬а	+m	0.01
¬а	¬m	0.99

Е	P(E)
+e	0.002
¬е	0.998

В	Ш	А	P(A B,E)
+b	+e	+a	0.95
+b	+e	¬а	0.05
+b	e	+a	0.94
+b	e	¬a	0.06
ا م	+e	+a	0.29
٦b	+e	¬a	0.71
٦	¬е	+a	0.001
¬b	¬е	¬a	0.999

Example: Traffic II

Let's build a causal graphical model

Variables

- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Independence

For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

Causal Chains

This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

X: Low pressure

Y: Rain

Z: Traffic

Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y) \qquad \text{Yes!}$$

Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - Are X and Z independent given Y?

Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining

Z: Ballgame

Y: Traffic

The General Case

 Any complex example can be analyzed using these three canonical cases

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

Example: Independent?

Example: Independent?

$$L \perp \!\!\! \perp T' | T$$
 Yes

$$L \perp \!\!\! \perp B$$
 Yes

$$L \perp \!\!\! \perp B | T$$

$$L \perp \!\!\! \perp B | T'$$

$$L \perp \!\!\! \perp B | T, R$$
 Yes

Example

Variables:

- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:

Changing Bayes' Net Structure

 The same joint distribution can be encoded in many different Bayes' nets

- Analysis question: given some edges, what other edges do you need to add?
 - One answer: fully connect the graph
 - Better answer: don't make any false conditional independence assumptions

Example: Coins

 Extra arcs don't prevent representing independence, just allow non-independence

D	(V	.)
Γ	$(\Lambda$	1)
		_ /

h	0.5
t	0.5

$$P(X_2)$$

h	0.5
t	0.5

$$P(X_1)$$

h	0.5
t	0.5

$$P(X_2|X_1)$$

h	h	0.5
t	h	0.5

 Adding unneeded arcs isn't wrong, it's just inefficient

h	t	0.5
t	t	0.5

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution