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Outline

 Probabilistic sequence models (and inference)
 (Review) Hidden Markov Models
 (Review) Particle Filters
 (Postponed) Most Probable Explanations
 Dynamic Bayesian networks
 Bayesian Networks (BNs)
 Independence in BNs



Announcements
 We are still grading PS3 
 PS4 out, due next Monday
 Mini-project guidelines out this week
 Exam next Thursday

 In class, closed book, one page of 
notes

 Look at Berkley exams for practice:
http://inst.eecs.berkeley.edu/~cs188/

fa10/midterm.html 

http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html


Recap: Reasoning Over Time

 Stationary Markov models
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 Hidden Markov models



Recap: Hidden Markov Models

 Defines a joint probability distribution:
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Summary: Filtering

 Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t )

 We first compute P( X1 | e1 ):

 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )



Example: Run the Filter

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:
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Recap: Filtering Example



Example Pac-man



Recap: Particle Filtering
 Sometimes |X| is too big to use 

exact inference
 |X| may be too big to even store B(X)
 E.g. X is continuous
 |X|2 may be too big to do updates

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5
 Solution: approximate inference

 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number 

of samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works 
in practice



Recap: Particle Filtering
At each time step t, we have a set of N particles / samples
 Initialization: Sample from prior, reweight and resample
 Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next 
state

2. Reweight: for each particle, compute its weight given the 
actual observation e

3. Resample: normalize the weights, and sample N new 
particles from the resulting distribution over states



Representation: Particles
 Our representation of P(X) is now 

a list of N particles (samples)
 Generally, N << |X|
 Storing map from X to counts 

would defeat the point

 P(x) approximated by number of 
particles with value x
 So, many x will have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a 
weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (2,1)
    (3,3)
    (3,3)
    (2,1)



Particle Filtering: Elapse Time

 Each particle is moved by sampling its 
next position from the transition model

 This is like prior sampling – samples’ 
frequencies reflect the transition probs

 Here, most samples move clockwise, but 
some move in another direction or stay in 
place

 This captures the passage of time
 If we have enough samples, close to the 

exact values before and after (consistent)



Particle Filtering: Observe

 Slightly trickier:
 We don’t sample the observation, we fix it
 We weight our samples based on the 

evidence

 Note that, as before, the weights/
probabilities don’t sum to one, since most 
have been downweighted (in fact they 
sum to an approximation of P(e))



Particle Filtering: Resample
 Rather than tracking 

weighted samples, we 
resample

 N times, we choose 
from our weighted 
sample distribution 
(i.e. draw with 
replacement)

 This is equivalent to 
renormalizing the 
distribution

 Now the update is 
complete for this time 
step, continue with the 
next one

Old Particles:
    (3,3) w=0.1
    (2,1) w=0.9
    (2,1) w=0.9  
    (3,1) w=0.4
    (3,2) w=0.3
    (2,2) w=0.4
    (1,1) w=0.4
    (3,1) w=0.4
    (2,1) w=0.9
    (3,2) w=0.3

New Particles:
    (2,1) w=1
    (2,1) w=1
    (2,1) w=1  
    (3,2) w=1
    (2,2) w=1
    (2,1) w=1
    (1,1) w=1
    (3,1) w=1
    (2,1) w=1
    (1,1) w=1



Recap: Particle Filtering
At each time step t, we have a set of N particles / samples
 Initialization: Sample from prior, reweight and resample
 Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next 
state

2. Reweight: for each particle, compute its weight given the 
actual observation e

3. Resample: normalize the weights, and sample N new 
particles from the resulting distribution over states



Which Algorithm?
Particle filter, uniform initial belief, 300 particles



PS4: Ghostbusters

 Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.  

 He was blinded by his power, but could 
hear the ghosts’ banging and clanging.

 Transition Model: All ghosts move 
randomly, but are sometimes biased

 Emission Model: Pacman knows a 
“noisy” distance to each ghost

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Noisy distance prob
True distance = 8



Dynamic Bayes Nets (DBNs)

 We want to track multiple variables over time, using 
multiple sources of evidence

 Idea: Repeat a fixed Bayes net structure at each time
 Variables from time t can condition on those from t-1

 Discrete valued dynamic Bayes nets are also HMMs
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a E1

b

G1
b

G2
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E2
a E2

b

G2
b

t =1 t =2
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E3
a E3

b
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b

t =3



DBN Particle Filters

 A particle is a complete sample for a time step
 Initialize: Generate prior samples for the t=1 Bayes net

 Example particle: G1
a = (3,3) G1

b = (5,3) 

 Elapse time: Sample a successor for each particle 
 Example successor: G2

a = (2,3) G2
b = (6,3)

 Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample
 Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b ) 

 Resample: Select samples (tuples of values) in 
proportion to their likelihood weights



Model for Ghostbusters

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Reminder: ghost is hidden, 
sensors are noisy

 T: Top sensor is red
B: Bottom sensor is red
G: Ghost is in the top

 Queries:
 P( +g) = ??

P( +g | +t) = ??
P( +g | +t, -b) = ??

 Problem: joint
 distribution too
 large / complex

Joint Distribution



Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 More properly called graphical models
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions



Bayes’ Net Semantics

 Let’s formalize the semantics of a 
Bayes’ net

 A set of nodes, one per variable X

 A directed, acyclic graph

 A conditional distribution for each node
 A collection of distributions over X, one for 

each combination of parents’ values

 CPT: conditional probability table

A1

X

An

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes’ Net: Car



Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions
 To see what probability a BN gives to a full assignment, multiply 

all the relevant conditionals together:

 This lets us reconstruct any entry of the full joint
 Not every BN can represent every joint distribution

 The topology enforces certain independence assumptions
 Compare to the exact decomposition according to the chain rule!



Example Bayes’ Net: Insurance



Example: Independence

 N fair, independent coin flips:

h 0.5
t 0.5

h 0.5
t 0.5

h 0.5
t 0.5



Example: Coin Flips

X1 X2 Xn

 N independent coin flips

 No interactions between variables: 
absolute independence



Independence
 Two variables are independent if:

 This says that their joint distribution factors into a product two 
simpler distributions

 Another form:

 We write: 

 Independence is a simplifying modeling assumption
 Empirical joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

T W P
warm sun 0.4
warm rain 0.1
cold sun 0.2
cold rain 0.3

T W P
warm sun 0.3
warm rain 0.2
cold sun 0.3
cold rain 0.2

T P
warm 0.5
cold 0.5

W P
sun 0.6
rain 0.4



Conditional Independence
 P(Toothache, Cavity, Catch)
 If I have a cavity, the probability that the probe catches in it doesn't 

depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, ¬cavity) = P(+catch| ¬cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 One can be derived from the other easily



Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about this domain:
 Traffic
 Umbrella
 Raining

 What about fire, smoke, alarm?



Ghostbusters Chain Rule

T B G P
(T,B,
G)

+t +b +g 0.16
+t +b ¬g 0.16
+t ¬b +g 0.24
+t ¬b ¬g 0.04

 ¬t +b +g 0.04
¬t +b ¬g 0.24
¬t ¬b +g 0.06
¬t ¬b ¬g 0.06

 Each sensor depends only
on where the ghost is

 That means, the two sensors are 
conditionally independent, given the 
ghost position

 T: Top square is red
B: Bottom square is red
G: Ghost is in the top

P(T,B,G) = P(G) P(T|G) P(B|G)

 Can assume:
 P( +g ) = 0.5
 P( +t  | +g ) = 0.8

P( +t  | ¬g ) = 0.4
P( +b | +g ) = 0.4
P( +b | ¬g ) = 0.8



Example: Traffic
 Variables:

 R: It rains
 T: There is traffic

 Model 1: independence

 Model 2: rain is conditioned on traffic

 Why is an agent using model 2 better?

 Model 3: traffic is conditioned on rain

 Is this better than model 2?



Example: Alarm Network

 Variables
 B: Burglary
 A: Alarm goes off
 M: Mary calls
 J: John calls
 E: Earthquake!



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)
+b 0.001

¬b 0.999

E P(E)
+e 0.002
¬e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e ¬a 0.05
+b ¬e +a 0.94
+b ¬e ¬a 0.06
¬b +e +a 0.29
¬b +e ¬a 0.71
¬b ¬e +a 0.001
¬b ¬e ¬a 0.999

A J P(J|A)
+a +j 0.9
+a ¬j 0.1
¬a +j 0.05
¬a ¬j 0.95

A M P(M|A)
+a +m 0.7
+a ¬m 0.3
¬a +m 0.01
¬a ¬m 0.99



Example: Traffic II

 Let’s build a causal graphical model

 Variables
 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity



Example: Independence

 For this graph, you can fiddle with θ (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5
t 0.5

h 0.5
t 0.5

X1 X2

All distributions



Topology Limits Distributions
 Given some graph topology 

G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 
(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution

X

Y

Z

X

Y

Z

X

Y

Z



Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z necessarily independent?
 Answer: no.  Example: low pressure causes rain, which 

causes traffic.
 X can influence Z, Z can influence X (via Y)
 Addendum: they could be independent: how?



Causal Chains

 This configuration is a “causal chain”

 Is X independent of Z given Y?

X Y Z

Yes!

X: Low pressure

Y: Rain

Z: Traffic

 Evidence along the chain “blocks” the influence



Common Cause

 Another basic configuration: two 
effects of the same cause
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z

Yes!

Y: Project due

X: Newsgroup 
busy

Z: Lab full

 Observing the cause blocks influence between effects.



Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent?

 Yes: the ballgame and the rain cause traffic, 
but they are not correlated

 Still need to prove they must be (try it!)

X

Y

Z

X: Raining

Z: Ballgame

Y: Traffic

 Are X and Z independent given Y?
 No: seeing traffic puts the rain and the 

ballgame in competition as explanation?

 This is backwards from the other cases
 Observing an effect activates influence 

between possible causes.



The General Case

 Any complex example can be analyzed 
using these three canonical cases

 General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph



Reachability

 Recipe: shade evidence nodes

 Attempt 1: if two nodes are 
connected by an undirected path 
not blocked by a shaded node, 
they are conditionally independent R

T

B

D

L

 Almost works, but not quite
 Where does it break?
 Answer: the v-structure at T 

doesn’t count as a link in a path 
unless “active”



Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple 
is active:
 Causal chain A → B → C where B 

is unobserved (either direction)
 Common cause A ← B → C where 

B is unobserved
 Common effect (aka v-structure)
 A → B ← C where B or one of its 

descendents is observed

 All it takes to block a path is 
a single inactive segment

 

Active Triples Inactive Triples



Example: Independent?

Yes R

T

B

T’



Example: Independent?

R

T

B

D

L

T’

Yes

Yes

Yes



Example

 Variables:
 R: Raining
 T: Traffic
 D: Roof drips
 S: I’m sad

 Questions:

T

S

D

R

Yes



Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

 Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph
 Better answer: don’t make any false 

conditional independence assumptions



Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

h 0.5
t 0.5

X1 X2 X1 X2

h 0.5
t 0.5

h | h 0.5
t | h 0.5
h | t 0.5
t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5
t 0.5



Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can 
be deduced from BN graph structure

 D-separation gives precise conditional 
independence guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable 
until you inspect its specific distribution


