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Outline

= Probabilistic sequence models (and inference)
* (Review) Hidden Markov Models
* (Review) Particle Filters
» (Postponed) Most Probable Explanations
* Dynamic Bayesian networks
= Bayesian Networks (BNs)
* |[ndependence in BNs



Announcements

= \We are still grading PS3

» PS4 out, due next Monday

= Mini-project guidelines out this week
* Exam next Thursday

" |n class, closed book, one page of
notes

» | ook at Berkley exams for practice:

= http://inst.eecs.berkeley.edu/~cs188/
fa10/midterm.html



http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html
http://inst.eecs.berkeley.edu/~cs188/fa10/midterm.html

Recap: Reasoning Over Time

= Stationary Markov models

> --»

P(X1) P(X|X_-1)

0.3
0.3
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= Hidden Markov models

) ()---»

P(E|X)

X E P
rain | umbrella 0.9
rain | no umbrella| 0.1
sun | umbrella 0.2
sun | no umbrella| 0.8




Recap: Hidden Markov Models

(>
H»H 666 6
= Defines a joint probability distribution:

P(X1,..., X, E1,...,E)
P(Xlzna El:n) —

N
P(X1)P(E1|X1) | [ P(Xe| Xeo1) P(Ee|Xy)



Summary: Filtering

= Filtering is the inference process of finding a distribution
over X; given e, through e : P( X; | eq)

= We first compute P( X, | e;): P(zile1) < P(z1) - P(e1|x1)
= Foreachtfrom2toT, we have P( X, | €4.4)
= Elapse time: compute P( X| €4..1)

/)(}1'/|( Lirey ) Z 1 f—1|( : f—l) (JTtIJTt—l)

Lt—1]

= Observe: compute P(X.| e,..,, €) = P(X| e,.)

P(x¢lerr) o< P(xlers—1) - Peg|xy)



Example: Run the Filter

R | P(R,)

[ 0.7
/ 0.3 /\

R, | PU,)

! 0.9

/ 0.2

Umhrell(D @zbrelD Umbrella,)

= An HMM is defined by:
= |nitial distribution: P(X71)
* Transitions: P(X:|X:1)
* Emissions: P(E|X)




Recap: Filtering Example

0.500 0.627
0.500 0.373
True 0.500 0.6!18 0.8'83
False 0.500 0.182 0.117




Example Pac-man




Recap: Particle Filtering

= Sometimes |X] is too big to use
exact inference

= |X| may be too big to even store B(X)
= E.g. Xis continuous
= |X|? may be too big to do updates

= Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles

= Time per step is linear in the number
of samples

= But: number needed may be large
* |n memory: list of particles, not states

= This is how robot localization works
In practice

0.0 | 0.1 | 0.0

0.0 | 0.0 | 0.2

00 | 02| 05
®
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Recap: Particle Filtering

At each time step t, we have a set of N particles / samples
» [|nitialization: Sample from prior, reweight and resample
= Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next
state

2’ = sample(P(X'|z))

2. Reweight: for each particle, compute its weight given the
actual observation e

w(z) = P(e|z)

3. Resample: normalize the weights, and sample N new
particles from the resulting distribution over states



Representation: Particles

Our representation of P(X) is now
a list of N particles (samples)

= Generally, N << [X]

= Storing map from X to counts
would defeat the point

P(x) approximated by number of
particles with value x

= So, many x will have P(x) = 0!
= More particles, more accuracy

For now, all particles have a
weight of 1

Particles:

(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(2,1)
(3,3)
(3,3)
(2,1)




Particle Filtering: Elapse Time

= Each particle is moved by sampling its
next position from the transition model

2/ = sample(P(X'|z))

» This is like prior sampling — samples’
frequencies reflect the transition probs
» Here, most samples move clockwise, but

some move in another direction or stay in
place

= This captures the passage of time

» |f we have enough samples, close to the
exact values before and after (consistent)

O\




Particle Filtering: Observe

= Slightly trickier:
= We don’t sample the observation, we fix it

= \We weight our samples based on the
evidence

w(z) = P(e|x)

B(X) x P(e|X)B'(X)

= Note that, as before, the weights/
probabilities don’t sum to one, since most
have been downweighted (in fact they
sum to an approximation of P(e))
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Particle Filtering: Resample

Rather than tracking
weighted samples, we
resample

N times, we choose
from our weighted
sample distribution
(i.e. draw with
replacement)

This is equivalent to
renormalizing the
distribution

Now the update is
complete for this time
step, continue with the
next one

Old Particles:
(3,3) w=0.1
(2,1) w=0.9
(2,1)w=0.9
(3,1) w=0.4
(3,2) w=0.3
(2,2) w=0.4
(1,1) w=0.4
(3,1) w=0.4
(2,1)w=0.9
(3,2) w=0.3

New Particles:
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Recap: Particle Filtering

At each time step t, we have a set of N particles / samples
» [|nitialization: Sample from prior, reweight and resample
= Three step procedure, to move to time t+1:

1. Sample transitions: for each each particle x, sample next
state

2’ = sample(P(X'|z))

2. Reweight: for each particle, compute its weight given the
actual observation e

w(z) = P(e|z)

3. Resample: normalize the weights, and sample N new
particles from the resulting distribution over states



Which Algorithm?

Particle filter, uniform initial belief, 300 particles




PS4: Ghostbusters

Noisy distance prob

= Plot: Pacman's grandfather, Grandpac, True distance = 8
learned to hunt ghosts for sport. 15
14 |
13 |
= He was blinded by his power, but could 12 1
hear the ghosts’ banging and clanging. 1; '_
9
= Transition Model: All ghosts move 3 f—
randomly, but are sometimes biased 6 mm
5 o
4 1
= Emission Model: Pacman knows a 3
“noisy” distance to each ghost i _'




Dynamic Bayes Nets (DBNSs)

= \We want to track multiple variables over time, using
multiple sources of evidence

» |dea: Repeat a fixed Bayes net structure at each time
= \ariables from time t can condition on those from ¢-1

t =1
G2
: G,b i,

= Discrete valued dynamic Bayes nets are also HMMs




DBN Particle Filters

A particle is a complete sample for a time step
Initialize: Generate prior samples for the t=1 Bayes net
= Example particle: G,2= (3,3) G, = (5,3)

Elapse time: Sample a successor for each particle

= Example successor: G,2= (2,3) G,P = (6,3)
Observe: Weight each entire sample by the likelihood of
the evidence conditioned on the sample

= Likelihood: P(E,2|G,2) * P(E,*|G,P)

Resample: Select samples (tuples of values) in
proportion to their likelihood weights



Model for Ghostbusters

= Reminder: ghost is hidden, Joint Distribution
Sensors are noisy
T B G P
= T: Top sensor is red
B: Bottom sensor is red t] *b| *g| 0.16
G: Ghost is in the top +t| +b| -g| 0.16

+#t| -b| +g| 0.24

= Queries:
P(+g) = ?? +| -b| -g| 0.04
P(+g | +t) = 77 ~t| +b| +g| 0.04

P(+q |+t -b) = ??
(+g | +t, -b) il +b| —g| 0.24

~t| -b| +g| 0.06
~t| -b| -g| 0.06

= Problem: joint
distribution too
large / complex




Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

» Hard to learn (estimate) anything empirically about more than a
few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)
= More properly called graphical models
= \We describe how variables locally interact

» | ocal interactions chain together to give global, indirect
interactions



Bayes’ Net Semantics

= Let's formalize the semantics of a
Bayes’ net s

= A set of nodes, one per variable X \ /

= Adirected, acyclic graph

= A conditional distribution for each node :%
= A collection of distributions over X, one for
each combination of parents’ values P(X|A71...4n)
P(Xla1...an)

= CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities



Example Bayes’' Net: Car




Probabilities in BNs

= Bayes’ nets implicitly encode joint distributions
» As a product of local conditional distributions

» To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:

[
P(z1,22,...Zn) = H P(x;|parents(X;))
=1

= This lets us reconstruct any entry of the full joint

= Not every BN can represent every joint distribution
» The topology enforces certain independence assumptions
= Compare to the exact decomposition according to the chain rule!



Example Bayes’ Net: Insurance




= N fair, independent coin flips:

Example: Independence

P(X1) P(X>) P(Xn)
h |05 h |05 h |05
t 0.5 t | 0.5 t | 0.5
N 7
—
 P(X1,X2,... Xn)
272.<

\



Example: Coin Flips

= N independent coin flips

*= No interactions between variables:
absolute independence



Independence

= Two variables are independent if:
Va,y: Plz,y) = P(z)P(y)

» This says that their joint distribution factors into a product two

simpler distributions
= Another form:

Yaouu - Plaly)—=P{(x)

= Wewrite: X || YV

» |ndependence is a simplifying modeling assumption
» Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity, Toothache}?



Example: Independence?

/ )1 (’T. ‘*‘”r)

P> ('T. 4% )

T W P
warm | sun | 0.4
warm | rain | 0.1

cold | sun | 0.2
cold | rain | 0.3

T W P
warm | sun | 0.3
warm | rain | 0.2

cold | sun | 0.3
cold | rain | 0.2

P
T P
warm | 0.5
cold | 0.5
P(W)
W P
sun | 0.6
rain | 0.4




Conditional Independence

P(Toothache, Cavity, Catch)
If | have a cavity, the probability that the probe catches in it doesn't
depend on whether | have a toothache:
= P(+catch | +toothache, +cavity) = P(+catch | +cavity)
The same independence holds if | don’'t have a cavity:
= P(+catch | +toothache, —cavity) = P(+catch| —cavity)
Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)
Equivalent statements:
= P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
» P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
» One can be derived from the other easily



Conditional Independence

= Unconditional (absolute) independence very rare (why?)

= Conditional independence is our most basic and robust
form of knowledge about uncertain environments:

Ve,y,2 . P(2,y|z) = P(z|z)P(y|z)

X Y|4
v £ P | P(.’I?|3, y) — P(:ili-'lf—':) |

= \What about this domain:
= Traffic
= Umbrella
= Raining
= \What about fire, smoke, alarm?



Ghostbusters Chain Rule

= Each depends onl
on where the ghostis P(T,B,G) = P(G) P(T|G) P(B|G)

T B G P

= That means, the two sensors are

conditionally independent, given the

ghost position +t| +b| +g| 0.16
= T: Top square is red *t) +b] ~9| 016

B: Bottom square is red +t| -b| +g| 0.24

G: Ghost is in the top

+t| -b| -g| 0.04

= Can assume: ~t| +b| +g| 0.04

P(+g)=0.5

E( +¥ +g ) = %i -t| +b| -g| 0.24

+ - = 0.
Db | 0120 -t -b| +g| 0.06
P(+b]~g)=038 -t| -b| -g| 0.06




Example: Traffic

= Variables:
= R: It rains
= T: There is traffic

= Model 1: independence
= Model 2: rain is conditioned on traffic

= Why is an agent using model 2 better?
= Model 3: traffic is conditioned on rain

= |s this better than model 27



Example: Alarm Network

* Variables
= B: Burglary
= A: Alarm goes off
= M: Mary calls
= J: John calls
» E: Earthquake!



Example: Alarm Network
+b |0.001 @ e 10.002
' ~e |0.998
~b [0.999
@ B E A P(AB,E)
+b | +e | +a 0.95
% +b | +e | -a 0.05

+b | —e | +a 0.94

A P(J|A) +b | -e | -a | 0.06

+a [+ |0.9 - P(MIA) -b | +te | +a 0.29

+a | -] |0.1 :a m 8; -b | +e | -a 0.71

~a |+ |0.05 I ERLLU B b|-e| +a | 0.001
: -a [+m |0.01

~a|-j |0.95 T2 =m 099 -b|-e| -a | 0.999




Example: Traffic Il

» Let’s build a causal graphical model

= Variables
= T: Traffic
» R:ltrains
= L. Low pressure
= D: Roof drips
= B: Ballgame
= C: Cavity



Example: Independence

= For this graph, you can fiddle with 6 (the CPTs) all you
want, but you won’t be able to represent any distribution

iIn which the flips are dependent!

OO

P(X1) P(X2)
h (0.5 h (0.5
t (0.5 t 0.5

X 3K

All distributions



Topology Limits Distributions

Given some graph topology
G, only certain joint
distributions can be encoded

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the
set of distributions, but has
several costs

Full conditioning can encode
any distribution

®
® @

03

8t



Independence in a BN

= Important question about a BN:
* Are two nodes independent given certain evidence?
» |f yes, can prove using algebra (tedious in general)
* |f no, can prove with a counter example

= Example:

» Question: are X and Z necessarily independent?

= Answer: no. Example: low pressure causes rain, which
causes traffic.

= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?



Causal Chains

= This configuration is a “causal chain”

X: Low pressure

@—»@—»@ Y: Rain

Z: Traffic
P(z,y,z) = P(z) P(ylz) P(zly)

» |s X independent of Z given Y?

P(z,y,z) P(x)P(y|lz)P(z|y)

P(zlz,y) = Bl w) — P(z)P(y|z)

= P(z|y) Yes!

= Evidence along the chain “blocks” the influence



Common Cause

= Another basic configuration: two
effects of the same cause @
= Are X and Z independent? / \,

= Are X and Z independent given Y? @ @

P(z,y,z) _ P(y)P(aly)P(zly) T Froectaue

P(z|x,y) =

/)(_-.1?-, ?/) P('.‘/)P(ilfl‘y) i)(lijsl\ilewsgroup
— P(g|y) Z: Lab full
Yes!

= Observing the cause blocks influence between effects.



Common Effect

= | ast configuration: two causes of

one effect (v-structures)
= Are X and Z independent? @ @
= Yes: the ballgame and the rain cause traffic, \, /
but they are not correlated @
= Still need to prove they must be (try it!)

= Are X and Z independent given Y?

= No: seeing traffic puts the rain and the
ballgame in competition as explanation? Z: Ballgame

» This is backwards from the other cases Y. Trafnc

= Observing an effect activates influence
between possible causes.

X: Raining



The General Case

= Any complex example can be analyzed
using these three canonical cases

= General question: in a given BN, are two
variables independent (given evidence)?

= Solution: analyze the graph



Reachabillity

= Recipe: shade evidence nodes

= Attempt 1: if two nodes are
connected by an undirected path

not blocked by a shaded node, @
they are conditionally independent
= Almost works, but not quite / \ /
= Where does it break? @
= Answer: the v-structure at T @

doesn’t count as a link in a path
unless “active”



Reachability (D-Separation)

= Question: Are Xand Y
conditionally independent
given evidence vars {Z}?

* Yes, if Xand Y “separated” by Z
» Look for active paths from Xto Y
= No active paths = independence!

= A path is active if each triple
IS active:

= Causal chain A— B — C where B
is unobserved (either direction)

= Common cause A <— B — C where
B is unobserved

= Common effect (aka v-structure)
A — B < C where B or one of its
descendents is observed
= All it takes to block a path is
a single inactive segment

Active Triples

~d€ §

Inactive Triples

O-@-0
Slie
S



Example: Independent?

R1 B Yes @

o \ /

R B|T’



Example: Independent?

O
LT T Yes
(&

N AV

L1 B|T’

L1 B|T,R Yes



Example

= \ariables:
» R: Raining
= T: Traffic

» D: Roof drips
= S: I’'m sad @

= Questions:
T 1 D
JER WD Yes
T 1 D|R, S




Changing Bayes’ Net Structure

= The same joint distribution can be
encoded in many different Bayes’ nets

= Analysis question: given some edges,
what other edges do you need to add?

= One answer: fully connect the graph

= Better answer: don’'t make any false
conditional independence assumptions



Example: Coins

= Extra arcs don't prevent representing
Independence, just allow non-independence

OO

P(X1) P(X5) P(X1) P(X2|X1)
h | 0.5 h | 0.5 h | 0.5 h|h|{0.5
t | 0.5 t | 0.5 t | 0.5 t|h |0.5
= Adding unneeded arcs isn't h|t |0.5
wrong, it's just inefficient t|t |0.5




Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can
be deduced from BN graph structure

= D-separation gives precise conditional
iIndependence guarantees from graph alone

= A Bayes’ net’s joint distribution may have further
(conditional) independence that is not detectable
until you inspect its specific distribution



