CSE 573: Artificial Intelligence Autumn 2010

Lecture 6: MDPs 10/19/2010

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein, Stuart Russell or Andrew Moore

Announcements

- PS2 online now
 - Due in one week
- Reading
 - two treatments of MDPs/RL

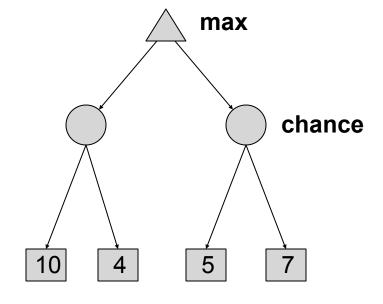
Outline (next few lectures)

- Markov Decision Processes (MDPs)
 - MDP formalism
 - Value Iteration
 - Policy Iteration

- Reinforcement Learning (RL)
 - Relationship to MDPs
 - Several learning algorithms

Review: Expectimax

- What if we don't know what the result of an action will be? E.g.,
 - In solitaire, next card is unknown
 - In minesweeper, mine locations
 - In pacman, the ghosts act randomly
- Can do expectimax search
 - Chance nodes, like min nodes, except the outcome is uncertain
 - Calculate expected utilities
 - Max nodes as in minimax search
 - Chance nodes take average (expectation) of value of children

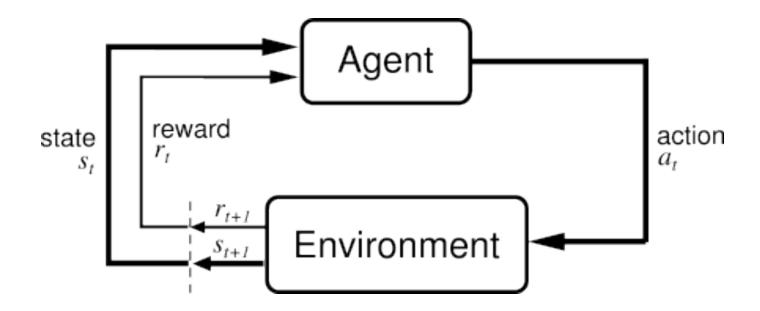


 Today, we'll learn how to formalize the underlying problem as a Markov Decision Process

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must learn to act so as to maximize expected rewards

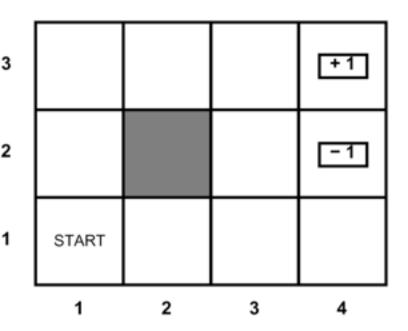


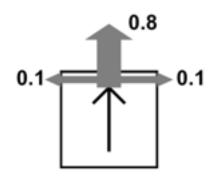
Reinforcement Learning

Videos here

Grid World

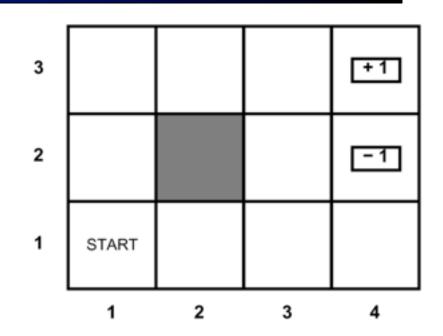
- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Small "living" reward each step
- Big rewards come at the end
- Goal: maximize sum of rewards

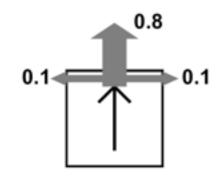




Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions a ∈ A
 - A transition function T(s,a,s')
 - Prob that a from s leads to s'
 - i.e., P(s' | s,a)
 - Also called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state (or distribution)
 - Maybe a terminal state
 - MDPs: non-deterministic search problems
 - Reinforcement learning: MDPs where we don't know the transition or reward functions





What is Markov about MDPs?

- Andrey Markov (1856-1922)
- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means:

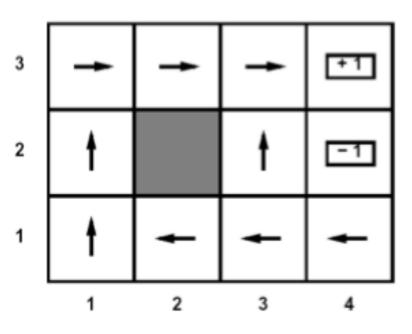
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

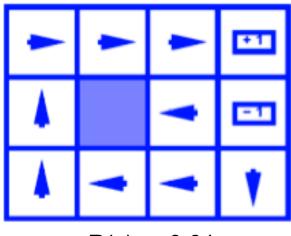
Solving MDPs

- In deterministic single-agent search problems, want an optimal plan, or sequence of actions, from start to a goal
- In an MDP, we want an optimal policy π^* : $S \to A$
 - A policy π gives an action for each state
 - An optimal policy maximizes expected utility if followed
 - Defines a reflex agent

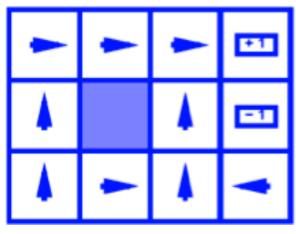
Optimal policy when R (s, a, s') = -0.03 for all non-terminals s



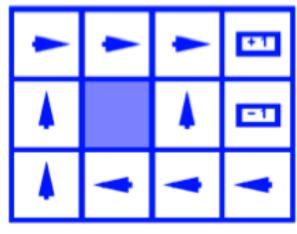
Example Optimal Policies



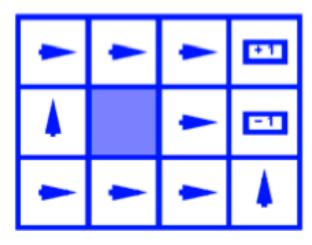
R(s) = -0.01



R(s) = -0.4



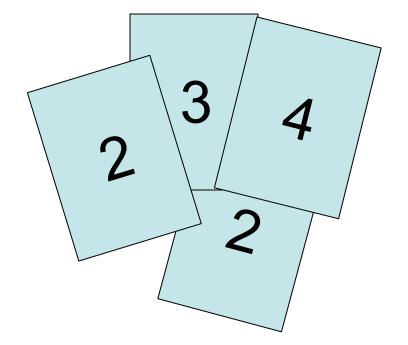
R(s) = -0.03



R(s) = -2.0

Example: High-Low

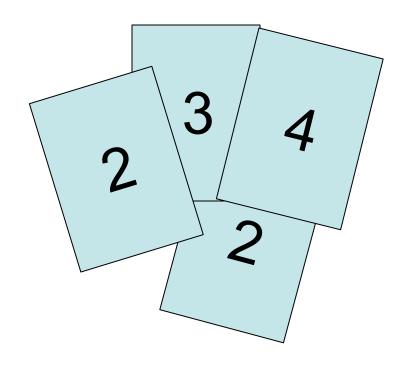
- Three card types: 2, 3, 4
- Infinite deck, twice as many 2's
- Start with 3 showing
- After each card, you say "high" or "low"
- New card is flipped
- If you're right, you win the points shown on the new card
- Ties are no-ops
- If you're wrong, game ends



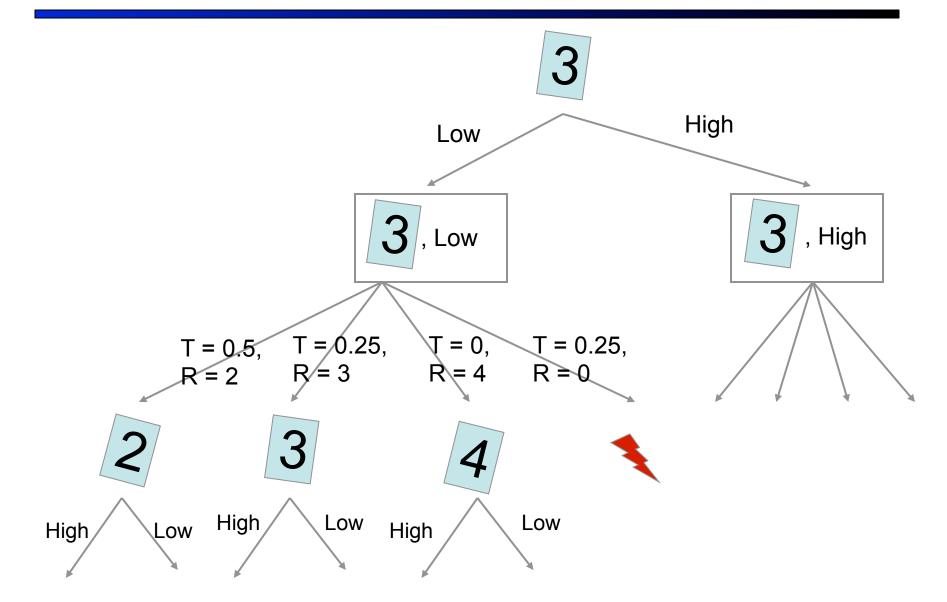
- Differences from expectimax problems:
 - #1: get rewards as you go
 - #2: you might play forever!

High-Low as an MDP

- States: 2, 3, 4, done
- Actions: High, Low
- Model: T(s, a, s'):
 - $P(s'=4 \mid 4, Low) = 1/4$
 - $P(s'=3 \mid 4, Low) = 1/4$
 - P(s'=2 | 4, Low) = 1/2
 - P(s'=done | 4, Low) = 0
 - $P(s'=4 \mid 4, High) = 1/4$
 - $P(s'=3 \mid 4, High) = 0$
 - $P(s'=2 \mid 4, High) = 0$
 - P(s'=done | 4, High) = 3/4
 - **...**
- Rewards: R(s, a, s'):
 - Number shown on s' if s ≠ s'
 - 0 otherwise

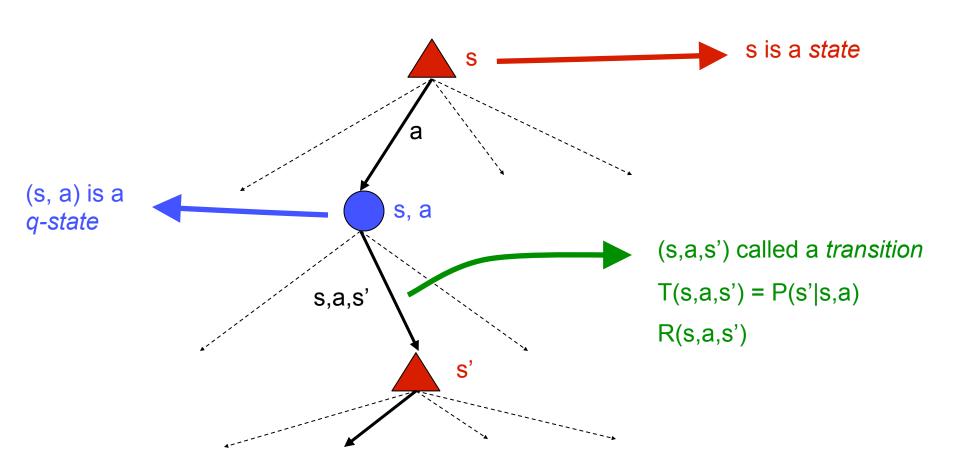


Search Tree: High-Low



MDP Search Trees

Each MDP state gives an expectimax-like search tree



Utilities of Sequences

- In order to formalize optimality of a policy, need to understand utilities of sequences of rewards
- Typically consider stationary preferences:

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

- Theorem: only two ways to define stationary utilities
 - Additive utility:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

• Discounted utility: $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

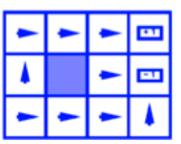
Infinite Utilities?!

Problem: infinite state sequences have infinite rewards

- Solutions:
 - Finite horizon:
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "done" for High-Low)
 - Discounting: for $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

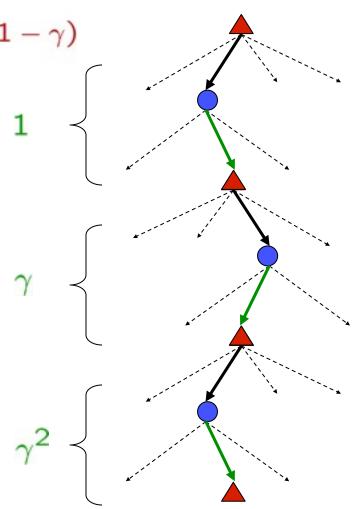
Smaller γ means smaller "horizon" – shorter term focus



Discounting

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

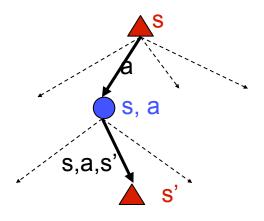
- Typically discount rewards by γ < 1 each time step
 - Sooner rewards have higher utility than later rewards
 - Also helps the algorithms converge



Recap: Defining MDPs

Markov decision processes:

- States S
- Start state s₀
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)



MDP quantities so far:

- Policy = Choice of action for each state
- Utility (or return) = sum of discounted rewards

Optimal Utilities

Define the value of a state s:

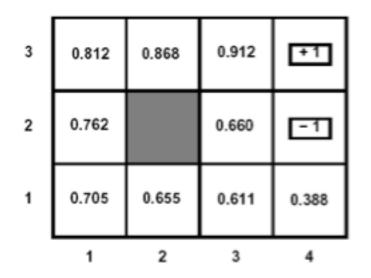
V*(s) = expected utility starting in s and acting optimally

Define the value of a q-state (s,a):

Q*(s,a) = expected utility starting in s, taking action a and thereafter acting optimally

Define the optimal policy:

 $\pi^*(s)$ = optimal action from state s



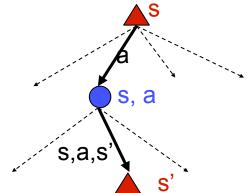


s, a

s,a,s

The Bellman Equations

Definition of "optimal utility" leads to a simple one-step lookahead relationship amongst optimal utility values:



$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

Why Not Search Trees?

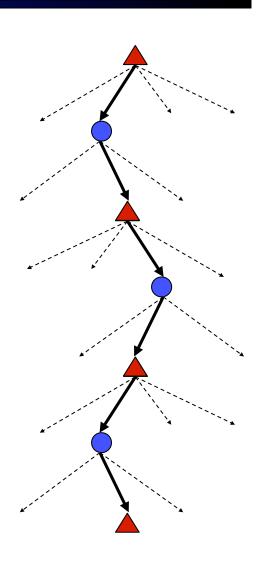
Why not solve with expectimax?

Problems:

- This tree is usually infinite (why?)
- Same states appear over and over (why?)
- We would search once per state (why?)

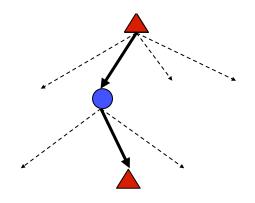
Idea: Value iteration

- Compute optimal values for all states all at once using successive approximations
- Will be a bottom-up dynamic program similar in cost to memoization
- Do all planning offline, no replanning needed!



Value Estimates

- Calculate estimates V_k*(s)
 - The optimal value considering only next k time steps (k rewards)
 - As k → ∞, it approaches the optimal value
 - Why:
 - If discounting, distant rewards become negligible
 - If terminal states reachable from everywhere, fraction of episodes not ending becomes negligible
 - Otherwise, can get infinite expected utility and then this approach actually won't work



Value Iteration

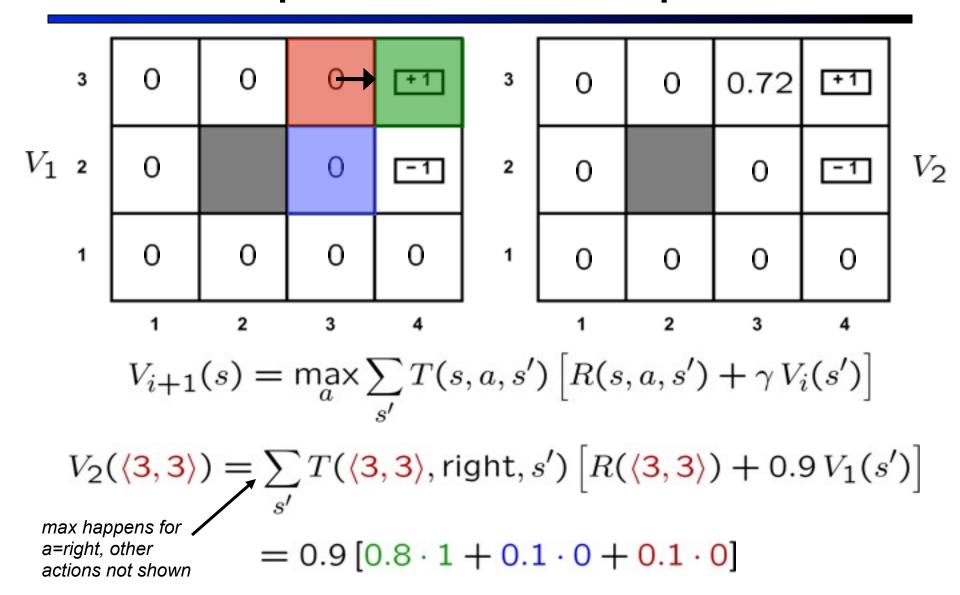
Idea:

- Start with $V_0^*(s) = 0$, which we know is right (why?)
- Given V_i*, calculate the values for all states for depth i+1:

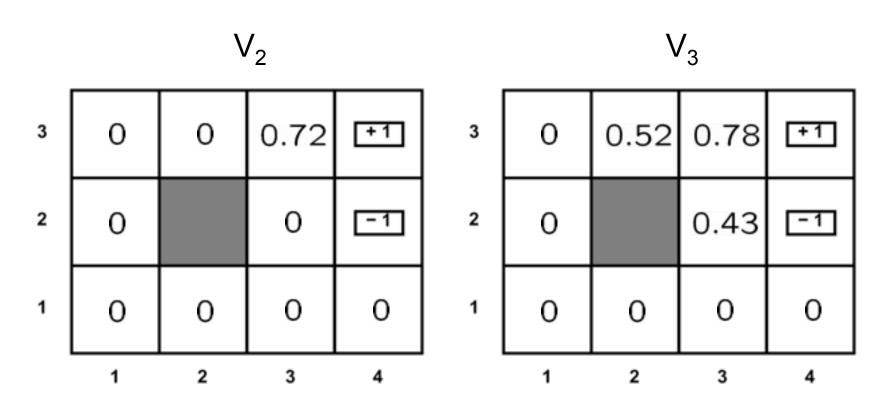
$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- This is called a value update or Bellman update
- Repeat until convergence
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Example: Bellman Updates

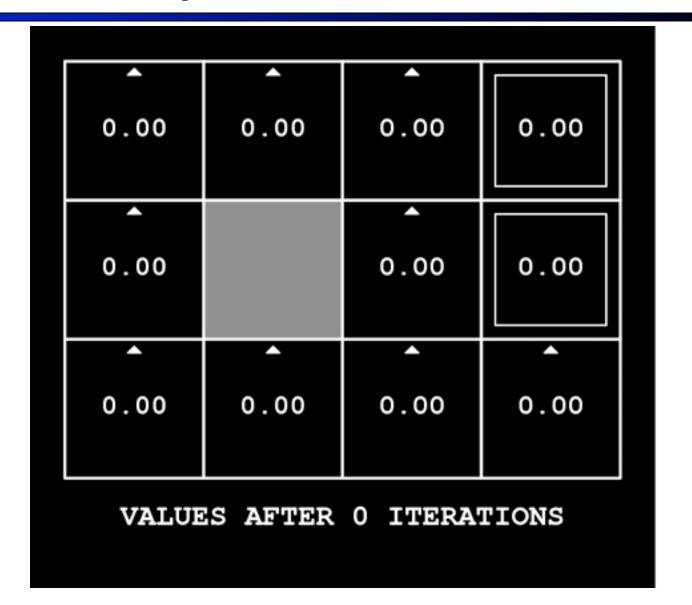


Example: Value Iteration



 Information propagates outward from terminal states and eventually all states have correct value estimates

Example: Value Iteration



Convergence

- Define the max-norm: $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U^{t+1} - V^{t+1}|| \le \gamma ||U^t - V^t||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem:

$$||U^{t+1} - U^t|| < \epsilon, \Rightarrow ||U^{t+1} - U|| < 2\epsilon\gamma/(1-\gamma)$$

 I.e. once the change in our approximation is small, it must also be close to correct

Value Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: O(|A|·|S|²)
 - Space: O(|S|)
- Num of iterations
 - Can be exponential in the discount factor γ

Practice: Computing Actions

- Which action should we chose from state s:
 - Given optimal values Q?

$$\underset{a}{\operatorname{arg\,max}} Q^*(s,a)$$

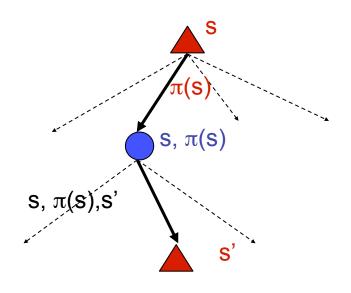
Given optimal values V?

$$\arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Lesson: actions are easier to select from Q's!

Utilities for Fixed Policies

- Another basic operation: compute the utility of a state s under a fix (general non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
 - $V^{\pi}(s)$ = expected total discounted rewards (return) starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):



$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Evaluation

- How do we calculate the V's for a fixed policy?
- Idea one: modify Bellman updates

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Idea two: it's just a linear system, solve with Matlab (or whatever)

Policy Iteration

- Problem with value iteration:
 - Considering all actions each iteration is slow: takes |A| times longer than policy evaluation
 - But policy doesn't change each iteration, time wasted
- Alternative to value iteration:
 - Step 1: Policy evaluation: calculate utilities for a fixed policy (not optimal utilities!) until convergence (fast)
 - Step 2: Policy improvement: update policy using onestep lookahead with resulting converged (but not optimal!) utilities (slow but infrequent)
 - Repeat steps until policy converges

Policy Iteration

- Policy evaluation: with fixed current policy π , find values with simplified Bellman updates:
 - Iterate until values converge

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Policy improvement: with fixed utilities, find the best action according to one-step look-ahead

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]$$

Policy Iteration Complexity

- Problem size:
 - |A| actions and |S| states
- Each Iteration
 - Computation: $O(|S|^3 + |A| \cdot |S|^2)$
 - Space: O(|S|)
- Num of iterations
 - Unknown, but can be faster in practice

Comparison

In value iteration:

 Every pass (or "backup") updates both utilities (explicitly, based on current utilities) and policy (possibly implicitly, based on current policy)

In policy iteration:

- Several passes to update utilities with frozen policy
- Occasional passes to update policies

Hybrid approaches (asynchronous policy iteration):

 Any sequences of partial updates to either policy entries or utilities will converge if every state is visited infinitely often