
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 6: MDPs
10/19/2010

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore

1

Announcements

 PS2 online now
 Due in one week

 Reading
 two treatments of MDPs/RL

Outline (next few lectures)

 Markov Decision Processes (MDPs)
MDP formalism
Value Iteration
Policy Iteration

 Reinforcement Learning (RL)
Relationship to MDPs
Several learning algorithms

Review: Expectimax
 What if we don’t know what the

result of an action will be? E.g.,
 In solitaire, next card is unknown
 In minesweeper, mine locations
 In pacman, the ghosts act randomly

10 4 5 7

max

chance

 Today, we’ll learn how to formalize
the underlying problem as a
Markov Decision Process

 Can do expectimax search
 Chance nodes, like min nodes,

except the outcome is uncertain
 Calculate expected utilities
 Max nodes as in minimax

search
 Chance nodes take average

(expectation) of value of children

Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards
 Agent’s utility is defined by the reward function
 Must learn to act so as to maximize expected rewards

Reinforcement Learning

Videos here

Grid World
 The agent lives in a grid
 Walls block the agent’s path
 The agent’s actions do not always

go as planned:
 80% of the time, the action North

takes the agent North
(if there is no wall there)

 10% of the time, North takes the
agent West; 10% East

 If there is a wall in the direction the
agent would have been taken, the
agent stays put

 Small “living” reward each step
 Big rewards come at the end
 Goal: maximize sum of rewards

Markov Decision Processes
 An MDP is defined by:

 A set of states s ∈ S
 A set of actions a ∈ A
 A transition function T(s,a,s’)

 Prob that a from s leads to s’
 i.e., P(s’ | s,a)
 Also called the model

 A reward function R(s, a, s’)
 Sometimes just R(s) or R(s’)

 A start state (or distribution)
 Maybe a terminal state

 MDPs: non-deterministic
search problems
 Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

What is Markov about MDPs?

 Andrey Markov (1856-1922)

 “Markov” generally means that given
the present state, the future and the
past are independent

 For Markov decision processes,
“Markov” means:

Solving MDPs

 In an MDP, we want an optimal policy π*: S → A
 A policy π gives an action for each state
 An optimal policy maximizes expected utility if followed
 Defines a reflex agent

Optimal policy when R
(s, a, s’) = -0.03 for all
non-terminals s

 In deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: High-Low

 Three card types: 2, 3, 4
 Infinite deck, twice as many 2’s
 Start with 3 showing
 After each card, you say “high”

or “low”
 New card is flipped
 If you’re right, you win the

points shown on the new card
 Ties are no-ops
 If you’re wrong, game ends

2

3
2

4

 Differences from expectimax problems:
 #1: get rewards as you go
 #2: you might play forever!

High-Low as an MDP
 States: 2, 3, 4, done
 Actions: High, Low
 Model: T(s, a, s’):

 P(s’=4 | 4, Low) = 1/4
 P(s’=3 | 4, Low) = 1/4
 P(s’=2 | 4, Low) = 1/2
 P(s’=done | 4, Low) = 0
 P(s’=4 | 4, High) = 1/4
 P(s’=3 | 4, High) = 0
 P(s’=2 | 4, High) = 0
 P(s’=done | 4, High) = 3/4
 …

 Rewards: R(s, a, s’):
 Number shown on s’ if s ≠ s’
 0 otherwise

2

3
2

4

Search Tree: High-Low
3

Low High

2 43
High Low High Low High Low

3 , Low , High3

T = 0.5,
R = 2

T = 0.25,
R = 3

T = 0,
R = 4

T = 0.25,
R = 0

MDP Search Trees
 Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

Utilities of Sequences
 In order to formalize optimality of a policy, need to

understand utilities of sequences of rewards
 Typically consider stationary preferences:

 Theorem: only two ways to define stationary utilities
 Additive utility:

 Discounted utility:

Infinite Utilities?!
 Problem: infinite state sequences have infinite rewards

 Solutions:
 Finite horizon:

 Terminate episodes after a fixed T steps (e.g. life)
 Gives nonstationary policies (π depends on time left)

 Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “done” for High-Low)

 Discounting: for 0 < γ < 1

 Smaller γ means smaller “horizon” – shorter term focus

Discounting

 Typically discount
rewards by γ < 1
each time step
 Sooner rewards

have higher utility
than later rewards

 Also helps the
algorithms converge

Recap: Defining MDPs

 Markov decision processes:
 States S
 Start state s0

 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)

 MDP quantities so far:
 Policy = Choice of action for each state
 Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

Optimal Utilities
 Define the value of a state s:

V*(s) = expected utility starting in s and acting
optimally

 Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s, taking action

a and thereafter acting optimally
 Define the optimal policy:

π*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’

The Bellman Equations

 Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

 Formally:

a

s

s, a

s,a,s’
s’

Why Not Search Trees?

 Why not solve with expectimax?

 Problems:
 This tree is usually infinite (why?)
 Same states appear over and over (why?)
 We would search once per state (why?)

 Idea: Value iteration
 Compute optimal values for all states all at

once using successive approximations
 Will be a bottom-up dynamic program

similar in cost to memoization
 Do all planning offline, no replanning

needed!

Value Estimates

 Calculate estimates Vk
*(s)

 The optimal value considering
only next k time steps (k rewards)

 As k → ∞, it approaches the
optimal value

 Why:
 If discounting, distant rewards

become negligible
 If terminal states reachable from

everywhere, fraction of episodes
not ending becomes negligible

 Otherwise, can get infinite expected
utility and then this approach
actually won’t work

Value Iteration

 Idea:
 Start with V0

*(s) = 0, which we know is right (why?)
 Given Vi

*, calculate the values for all states for depth i+1:

 This is called a value update or Bellman update
 Repeat until convergence

 Theorem: will converge to unique optimal values
 Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do

Example: Bellman Updates

max happens for
a=right, other
actions not shown

Example: γ=0.9, living
reward=0, noise=0.2

Example: Value Iteration

 Information propagates outward from terminal
states and eventually all states have correct
value estimates

V2 V3

Example: Value Iteration

Convergence
 Define the max-norm:

 Theorem: For any two approximations U and V

 I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

 Theorem:

 I.e. once the change in our approximation is small, it must also
be close to correct

Value Iteration Complexity

 Problem size:
 |A| actions and |S| states

 Each Iteration
 Computation: O(|A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Can be exponential in the discount factor γ

Practice: Computing Actions

 Which action should we chose from state s:

 Given optimal values Q?

 Given optimal values V?

 Lesson: actions are easier to select from Q’s!

Utilities for Fixed Policies
 Another basic operation:

compute the utility of a state s
under a fix (general non-optimal)
policy

 Define the utility of a state s,
under a fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

 Recursive relation (one-step
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

Policy Evaluation

 How do we calculate the V’s for a fixed policy?

 Idea one: modify Bellman updates

 Idea two: it’s just a linear system, solve with
Matlab (or whatever)

Policy Iteration

 Problem with value iteration:
 Considering all actions each iteration is slow: takes |A|

times longer than policy evaluation
 But policy doesn’t change each iteration, time wasted

 Alternative to value iteration:
 Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence (fast)
 Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

 Repeat steps until policy converges

Policy Iteration

 Policy evaluation: with fixed current policy π, find values
with simplified Bellman updates:
 Iterate until values converge

 Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Policy Iteration Complexity

 Problem size:
 |A| actions and |S| states

 Each Iteration
 Computation: O(|S|3 + |A|⋅|S|2)
 Space: O(|S|)

 Num of iterations
 Unknown, but can be faster in practice

Comparison

 In value iteration:
 Every pass (or “backup”) updates both utilities (explicitly, based

on current utilities) and policy (possibly implicitly, based on
current policy)

 In policy iteration:
 Several passes to update utilities with frozen policy
 Occasional passes to update policies

 Hybrid approaches (asynchronous policy iteration):
 Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

