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Announcements

 PS 1 due on Friday
 Will submit via dropbox, instructions 

will be posted soon
 PS 2 will be out shortly after 
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Today

 Proof of Graph Search A* Optimality

 Start Adversarial Search
 Minimax search
 α-β search
 Evaluation functions
 Expectimax 
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Recap: Graph Search
 Search problem:

 States (configurations of the world)
 Successor function: a function from states to 

lists of (state, action, cost) triples; drawn as a graph
 Start state and goal test

 Search tree:
 Nodes: represent plans for reaching states
 Plans have costs (sum of action costs)

 Search Algorithm:
 Systematically builds a search tree
 Chooses an ordering of the fringe (unexplored nodes)
 Graph Search: only expand each state once
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Optimality of A* Graph Search
Proof:
 Main idea: Argue that nodes are 

popped with non-decreasing f-scores
 for all n,n’ with n’ popped after n : 

 f(n’) ≥ f(n)
 is this enough for optimality?

 Sketch: 
 assume: f(n’) ≥ f(n), for all edges (n,a,n’) and all actions a

 is this true?
 proof by induction: (1) always pop the lowest f-score from the 

fringe, (2) all new nodes have larger (or equal) scores, (3) add 
them to the fringe, (4) repeat!
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Consistency
 Wait, how do we know parents have better f-values than 

their successors?

A

B

G

3
h = 0

h = 10

g = 10

 Consistency for all edges (n,a,n’):
 h(n) ≤ c(n,a,n’) + h(n’)

 Proof that f(n’) ≥ f(n),   
 f(n’) = g(n’) + h(n’) = g(n) + c(n,a,n’) + h(n’) ≥ g(n) + h(n) = f(n)
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Optimality

 Tree search:
 A* optimal if heuristic is admissible (and non-

negative)
 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent
 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, natural admissible heuristics tend to 
be consistent
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Game Playing State-of-the-Art
 Checkers: Chinook ended 40-year-reign of human world champion 

Marion Tinsley in 1994. Used an endgame database defining perfect 
play for all positions involving 8 or fewer pieces on the board, a total of 
443,748,401,247 positions.  Checkers is now solved!

 Chess: Deep Blue defeated human world champion Gary Kasparov in a 
six-game match in 1997. Deep Blue examined 200 million positions per 
second, used very sophisticated evaluation and undisclosed methods 
for extending some lines of search up to 40 ply.  Current programs are 
even better, if less historic.

 Othello: Human champions refuse to compete against computers, 
which are too good.

 Go: Human champions are beginning to be challenged by machines, 
though the best humans still beat the best machines. In go, b > 300, so 
most programs use pattern knowledge bases to suggest plausible 
moves, along with aggressive pruning.

 Pacman: unknown
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Artificial Intelligence (AI) researchers have for decades worked on building 
game-playing agents capable of matching wits with the strongest humans in 
the world, resulting in several success stories for games like e.g. chess and 
checkers. The success of such systems has been for a part due to years of 
relentless knowledge-engineering effort on behalf of the program 
developers, manually adding application-dependent knowledge to their 
game-playing agents. Also, the various algorithmic enhancements used are 
often highly tailored towards the game at hand.  

Research into general game playing (GGP) aims at taking this approach to 
the next level: to build intelligent software agents that can, given the rules of 
any game, automatically learn a strategy for playing that game at an expert 
level without any human intervention. On contrary to software systems 
designed to play one specific game, systems capable of playing arbitrary 
unseen games cannot be provided with game-specific domain knowledge a 
priory. Instead they must be endowed with high-level abilities to learn 
strategies and make abstract reasoning. Successful realization of this poses 
many interesting research challenges for a wide variety of artificial-
intelligence sub-areas including (but not limited to):  

 knowledge representation,  
 reasoning,  
 heuristic search,  
 automated planning,  
 computational game-theory,  
 multi-agent systems,  
 machine learning.  

The aim of this workshop is bring together researchers from the above sub-
fields of AI to discuss how best to address the challenges of and further 
advance the state-of-the-art of general game-playing systems and generic 
artificial intelligence.  

Information for Authors 
 

The workshop papers should be submitted online (see workshop webpage) 
and must adhere to the IJCAI paper-formatting guidelines, except that they 
can be up to 8 pages long and should not be anonymous. The papers must 
present original work that has not been published elsewhere. However, 
submissions of papers that are under review elsewhere are allowed, in 
particular we welcome papers submitted to the main technical track of 
IJCAI.  All papers will be peer reviewed and non-archival working notes 
produced containing the papers presented at the workshop. 
 
Important Dates 
 

 Paper submission: March 11th, 2009  
 Acceptance notification: April 17th, 2009  
 Camera-ready papers due: May 8th, 2009 
 Workshop date:  July 13, 2009 

General Game Playing
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Adversarial Search
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Game Playing

 Many different kinds of games!

 Axes:
 Deterministic or stochastic?
 One, two, or more players?
 Perfect information (can you see the state)?

 Want algorithms for calculating a strategy 
(policy) which recommends a move in each state
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Deterministic Games

 Many possible formalizations, one is:
 States: S (start at s0)
 Players: P={1...N} (usually take turns)
 Actions: A (may depend on player / state)
 Transition Function: S x A → S
 Terminal Test: S → {t,f}
 Terminal Utilities: S x P → R

 Solution for a player is a policy: S → A
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Deterministic Single-Player
 Deterministic, single player, 

perfect information:
 Know the rules, action effects, 

winning states
 E.g. Freecell, 8-Puzzle, Rubik’s 

cube
 … it’s just search!

win loselose

 Slight reinterpretation:
 Each node stores a value: the 

best outcome it can reach
 This is the maximal outcome of 

its children (the max value)
 Note that we don’t have path 

sums as before (utilities at end)
 After search, can pick move that 

leads to best node
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Deterministic Two-Player

 E.g. tic-tac-toe, chess, checkers
 Zero-sum games

 One player maximizes result
 The other minimizes result

8 2 5 6

max

min Minimax search
 A state-space search tree
 Players alternate
 Choose move to position with 

highest minimax value = best 
achievable utility against best 
play
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Tic-tac-toe Game Tree
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Minimax Example
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Minimax Search
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Minimax Properties

 Optimal against a perfect player.  Otherwise?

 Time complexity?

 Space complexity?

10 10 9 100

max

min
 O(bm)

 O(bm)

 For chess, b ≈ 35, m ≈ 100
 Exact solution is completely infeasible
 But, do we need to explore the whole tree?
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α-β Pruning Example
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α-β Pruning Example

[3,3] [-∞,2] [2,2]

[3,3]

Tuesday, October 12, 2010



α-β Pruning

 General configuration
 α is the best value that 

MAX can get at any 
choice point along the 
current path

 If n becomes worse than 
α, MAX will avoid it, so 
can stop considering n’s 
other children

 Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n
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α-β Pruning Pseudocode

β

v
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α-β Pruning Properties

 Pruning has no effect on final result

 Good move ordering improves 
effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)
 Doubles solvable depth
 Full search of, e.g. chess, is still hopeless!
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Resource Limits
 Cannot search to leaves
 Depth-limited search

 Instead, search a limited depth of tree
 Replace terminal utilities with an eval 

function for non-terminal positions
 Guarantee of optimal play is gone
 Example:

 Suppose we have 100 seconds, can 
explore 10K nodes / sec

 So can check 1M nodes per move
 α-β reaches about depth 8 – decent 

chess program
? ? ? ?

-1 -2 4 9

4
min min

max
-2 4
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Evaluation Functions
 Function which scores non-terminals

 Ideal function: returns the utility of the position
 In practice: typically weighted linear sum of features:

 e.g. f1(s) = (num white queens – num black queens), etc.
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Evaluation for Pacman

What features would be good for Pacman?
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Which algorithm?

α-β, depth 4, simple eval fun

Tuesday, October 12, 2010



Which algorithm?

α-β, depth 4, better eval fun
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Why Pacman Starves

 He knows his score will go 
up by eating the dot now

 He knows his score will go 
up just as much by eating 
the dot later on

 There are no point-scoring 
opportunities after eating 
the dot

 Therefore, waiting seems 
just as good as eating
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Iterative Deepening
Iterative deepening uses DFS as a 

subroutine:

1. Do a DFS which only searches for paths 
of length 1 or less.  (DFS  gives up on 
any path of length 2)

2. If “1” failed, do a DFS which only 
searches paths of length 2 or less.

3. If “2” failed, do a DFS which only 
searches paths of length 3 or less.

    ….and so on.
Why do we want to do this for multiplayer 

games?

…
b
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Multi-Player Non-Zero-Sum Games

 Similar to 
minimax:
 Utilities are 

now tuples
 Each player 

maximizes 
their own entry 
at each node

 Propagate (or 
back up) nodes 
from children

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5
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Stochastic Single-Player
 What if we don’t know what the 

result of an action will be? E.g.,
 In solitaire, shuffle is unknown
 In minesweeper, mine locations

10 4 5 7

max

average
 Can do expectimax search

 Chance nodes, like actions 
except the environment controls 
the action chosen

 Max nodes as before
 Chance nodes take average 

(expectation) of value of children
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Which Algorithms?

Expectimax Minimax

3 ply look ahead, ghosts move randomly
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Stochastic Two-Player
 E.g. backgammon
 Expectiminimax (!)

 Environment is an 
extra player that moves 
after each agent

 Chance nodes take 
expectations, otherwise 
like minimax
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Stochastic Two-Player

 Dice rolls increase b: 21 possible rolls 
with 2 dice
 Backgammon ≈ 20 legal moves
 Depth 4 = 20 x (21 x 20)3 = 1.2 x 109

 As depth increases, probability of 
reaching a given node shrinks
 So value of lookahead is diminished
 So limiting depth is less damaging
 But pruning is less possible…

 TDGammon uses depth-2 search + 
very good eval function + 
reinforcement learning: world-
champion level play
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What’s Next?

 Make sure you know what:
 Probabilities are
 Expectations are

 Next topics:
 Dealing with uncertainty
 How to learn evaluation functions
 Markov Decision Processes
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