
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 4: Adversarial Search
10/12/2009

Luke Zettlemoyer
Based on slides from Dan Klein

Many slides over the course adapted from either Stuart Russell
or Andrew Moore

1
Tuesday, October 12, 2010

Announcements

 PS 1 due on Friday
 Will submit via dropbox, instructions

will be posted soon
 PS 2 will be out shortly after

Tuesday, October 12, 2010

Today

 Proof of Graph Search A* Optimality

 Start Adversarial Search
 Minimax search
 α-β search
 Evaluation functions
 Expectimax

Tuesday, October 12, 2010

Recap: Graph Search
 Search problem:

 States (configurations of the world)
 Successor function: a function from states to

lists of (state, action, cost) triples; drawn as a graph
 Start state and goal test

 Search tree:
 Nodes: represent plans for reaching states
 Plans have costs (sum of action costs)

 Search Algorithm:
 Systematically builds a search tree
 Chooses an ordering of the fringe (unexplored nodes)
 Graph Search: only expand each state once

Tuesday, October 12, 2010

Optimality of A* Graph Search
Proof:
 Main idea: Argue that nodes are

popped with non-decreasing f-scores
 for all n,n’ with n’ popped after n :

 f(n’) ≥ f(n)
 is this enough for optimality?

 Sketch:
 assume: f(n’) ≥ f(n), for all edges (n,a,n’) and all actions a

 is this true?
 proof by induction: (1) always pop the lowest f-score from the

fringe, (2) all new nodes have larger (or equal) scores, (3) add
them to the fringe, (4) repeat!

Tuesday, October 12, 2010

Consistency
 Wait, how do we know parents have better f-values than

their successors?

A

B

G

3
h = 0

h = 10

g = 10

 Consistency for all edges (n,a,n’):
 h(n) ≤ c(n,a,n’) + h(n’)

 Proof that f(n’) ≥ f(n),
 f(n’) = g(n’) + h(n’) = g(n) + c(n,a,n’) + h(n’) ≥ g(n) + h(n) = f(n)

Tuesday, October 12, 2010

Optimality

 Tree search:
 A* optimal if heuristic is admissible (and non-

negative)
 UCS is a special case (h = 0)

 Graph search:
 A* optimal if heuristic is consistent
 UCS optimal (h = 0 is consistent)

 Consistency implies admissibility

 In general, natural admissible heuristics tend to
be consistent

Tuesday, October 12, 2010

Game Playing State-of-the-Art
 Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

 Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply. Current programs are
even better, if less historic.

 Othello: Human champions refuse to compete against computers,
which are too good.

 Go: Human champions are beginning to be challenged by machines,
though the best humans still beat the best machines. In go, b > 300, so
most programs use pattern knowledge bases to suggest plausible
moves, along with aggressive pruning.

 Pacman: unknown

Tuesday, October 12, 2010

The IJCAI-09 Workshop on General Game Playing
General Intelligence in Game Playing Agents (GIGA'09)

Pasadena, CA, USA

Workshop Organizers

Yngvi Björnsson
School of Computer Science
Reykjavik University

Peter Stone
Department of Computer Sciences
University of Texas at Austin

Michael Thielscher
Department of Computer Science
Dresden University of Technology

Program Committee

Yngvi Björnsson,
Reykjavik University

Patrick Doherty,
Linköping University

Michael Genesereth,
Stanford University

Jonathan Schaeffer,
University of Alberta

Peter Stone,
University of Texas, Austin

Michael Thielscher,
Technical University of Dresden

University Jaap van den Herik,
University of Tilburg

Michael Wooldridge,
University of Liverpool

Contacts

Yngvi Björnsson
email: yngvi@ru.is

Michael Thielscher
Email: mit@inf.tu-dresden.de

Webpage:

http://www.ru.is/faculty/yngvi/GIGA09

Artificial Intelligence (AI) researchers have for decades worked on building
game-playing agents capable of matching wits with the strongest humans in
the world, resulting in several success stories for games like e.g. chess and
checkers. The success of such systems has been for a part due to years of
relentless knowledge-engineering effort on behalf of the program
developers, manually adding application-dependent knowledge to their
game-playing agents. Also, the various algorithmic enhancements used are
often highly tailored towards the game at hand.

Research into general game playing (GGP) aims at taking this approach to
the next level: to build intelligent software agents that can, given the rules of
any game, automatically learn a strategy for playing that game at an expert
level without any human intervention. On contrary to software systems
designed to play one specific game, systems capable of playing arbitrary
unseen games cannot be provided with game-specific domain knowledge a
priory. Instead they must be endowed with high-level abilities to learn
strategies and make abstract reasoning. Successful realization of this poses
many interesting research challenges for a wide variety of artificial-
intelligence sub-areas including (but not limited to):

 knowledge representation,
 reasoning,
 heuristic search,
 automated planning,
 computational game-theory,
 multi-agent systems,
 machine learning.

The aim of this workshop is bring together researchers from the above sub-
fields of AI to discuss how best to address the challenges of and further
advance the state-of-the-art of general game-playing systems and generic
artificial intelligence.

Information for Authors

The workshop papers should be submitted online (see workshop webpage)
and must adhere to the IJCAI paper-formatting guidelines, except that they
can be up to 8 pages long and should not be anonymous. The papers must
present original work that has not been published elsewhere. However,
submissions of papers that are under review elsewhere are allowed, in
particular we welcome papers submitted to the main technical track of
IJCAI. All papers will be peer reviewed and non-archival working notes
produced containing the papers presented at the workshop.

Important Dates

 Paper submission: March 11th, 2009
 Acceptance notification: April 17th, 2009
 Camera-ready papers due: May 8th, 2009
 Workshop date: July 13, 2009

General Game Playing

Tuesday, October 12, 2010

Adversarial Search

Tuesday, October 12, 2010

Game Playing

 Many different kinds of games!

 Axes:
 Deterministic or stochastic?
 One, two, or more players?
 Perfect information (can you see the state)?

 Want algorithms for calculating a strategy
(policy) which recommends a move in each state

Tuesday, October 12, 2010

Deterministic Games

 Many possible formalizations, one is:
 States: S (start at s0)
 Players: P={1...N} (usually take turns)
 Actions: A (may depend on player / state)
 Transition Function: S x A → S
 Terminal Test: S → {t,f}
 Terminal Utilities: S x P → R

 Solution for a player is a policy: S → A

Tuesday, October 12, 2010

Deterministic Single-Player
 Deterministic, single player,

perfect information:
 Know the rules, action effects,

winning states
 E.g. Freecell, 8-Puzzle, Rubik’s

cube
 … it’s just search!

win loselose

 Slight reinterpretation:
 Each node stores a value: the

best outcome it can reach
 This is the maximal outcome of

its children (the max value)
 Note that we don’t have path

sums as before (utilities at end)
 After search, can pick move that

leads to best node

Tuesday, October 12, 2010

Deterministic Two-Player

 E.g. tic-tac-toe, chess, checkers
 Zero-sum games

 One player maximizes result
 The other minimizes result

8 2 5 6

max

min Minimax search
 A state-space search tree
 Players alternate
 Choose move to position with

highest minimax value = best
achievable utility against best
play

Tuesday, October 12, 2010

Tic-tac-toe Game Tree

Tuesday, October 12, 2010

Minimax Example

Tuesday, October 12, 2010

Minimax Search

Tuesday, October 12, 2010

Minimax Properties

 Optimal against a perfect player. Otherwise?

 Time complexity?

 Space complexity?

10 10 9 100

max

min
 O(bm)

 O(bm)

 For chess, b ≈ 35, m ≈ 100
 Exact solution is completely infeasible
 But, do we need to explore the whole tree?

Tuesday, October 12, 2010

α-β Pruning Example

Tuesday, October 12, 2010

α-β Pruning Example

[3,3] [-∞,2] [2,2]

[3,3]

Tuesday, October 12, 2010

α-β Pruning

 General configuration
 α is the best value that

MAX can get at any
choice point along the
current path

 If n becomes worse than
α, MAX will avoid it, so
can stop considering n’s
other children

 Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n

Tuesday, October 12, 2010

α-β Pruning Pseudocode

β

v

Tuesday, October 12, 2010

α-β Pruning Properties

 Pruning has no effect on final result

 Good move ordering improves
effectiveness of pruning

 With “perfect ordering”:
 Time complexity drops to O(bm/2)
 Doubles solvable depth
 Full search of, e.g. chess, is still hopeless!

Tuesday, October 12, 2010

Resource Limits
 Cannot search to leaves
 Depth-limited search

 Instead, search a limited depth of tree
 Replace terminal utilities with an eval

function for non-terminal positions
 Guarantee of optimal play is gone
 Example:

 Suppose we have 100 seconds, can
explore 10K nodes / sec

 So can check 1M nodes per move
 α-β reaches about depth 8 – decent

chess program
? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

Tuesday, October 12, 2010

Evaluation Functions
 Function which scores non-terminals

 Ideal function: returns the utility of the position
 In practice: typically weighted linear sum of features:

 e.g. f1(s) = (num white queens – num black queens), etc.

Tuesday, October 12, 2010

Evaluation for Pacman

What features would be good for Pacman?

Tuesday, October 12, 2010

Which algorithm?

α-β, depth 4, simple eval fun

Tuesday, October 12, 2010

Which algorithm?

α-β, depth 4, better eval fun

Tuesday, October 12, 2010

Why Pacman Starves

 He knows his score will go
up by eating the dot now

 He knows his score will go
up just as much by eating
the dot later on

 There are no point-scoring
opportunities after eating
the dot

 Therefore, waiting seems
just as good as eating

Tuesday, October 12, 2010

Iterative Deepening
Iterative deepening uses DFS as a

subroutine:

1. Do a DFS which only searches for paths
of length 1 or less. (DFS gives up on
any path of length 2)

2. If “1” failed, do a DFS which only
searches paths of length 2 or less.

3. If “2” failed, do a DFS which only
searches paths of length 3 or less.

 ….and so on.
Why do we want to do this for multiplayer

games?

…
b

Tuesday, October 12, 2010

Multi-Player Non-Zero-Sum Games

 Similar to
minimax:
 Utilities are

now tuples
 Each player

maximizes
their own entry
at each node

 Propagate (or
back up) nodes
from children

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

Tuesday, October 12, 2010

Stochastic Single-Player
 What if we don’t know what the

result of an action will be? E.g.,
 In solitaire, shuffle is unknown
 In minesweeper, mine locations

10 4 5 7

max

average
 Can do expectimax search

 Chance nodes, like actions
except the environment controls
the action chosen

 Max nodes as before
 Chance nodes take average

(expectation) of value of children

Tuesday, October 12, 2010

Which Algorithms?

Expectimax Minimax

3 ply look ahead, ghosts move randomly

Tuesday, October 12, 2010

Stochastic Two-Player
 E.g. backgammon
 Expectiminimax (!)

 Environment is an
extra player that moves
after each agent

 Chance nodes take
expectations, otherwise
like minimax

Tuesday, October 12, 2010

Stochastic Two-Player

 Dice rolls increase b: 21 possible rolls
with 2 dice
 Backgammon ≈ 20 legal moves
 Depth 4 = 20 x (21 x 20)3 = 1.2 x 109

 As depth increases, probability of
reaching a given node shrinks
 So value of lookahead is diminished
 So limiting depth is less damaging
 But pruning is less possible…

 TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Tuesday, October 12, 2010

What’s Next?

 Make sure you know what:
 Probabilities are
 Expectations are

 Next topics:
 Dealing with uncertainty
 How to learn evaluation functions
 Markov Decision Processes

Tuesday, October 12, 2010

