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Announcements

= Syllabus revised
» Machine learning focus

* We will do mini-project status reports
during last class, on Thursday

= |nstructions were emailed and are on
web page



Outline

= Learning: Naive Bayes and Perceptron
» (Recap) Perceptron
= MIRA
= SVMs
» Linear Ranking Models
= Nearest neighbor
= Kernels
» Clustering




Generative vs. Discriminative

= Generative classifiers:
* E.g. naive Bayes
= A joint probability model with evidence variables
= Query model for causes given evidence

= Discriminative classifiers:

= No generative model, no Bayes rule, often no
probabilities at all!

» Try to predict the label Y directly from X
» Robust, accurate with varied features
» | oosely: mistake driven rather than model driven



(Recap) Linear Classifiers

e
= |nputs are feature values ( (e
= Each feature has a weight -
= Sum is the activation S ‘

activationy(x) = Z w; - f;(x) = w- f(x)
(d

= |f the activation is: e
= Positive, output +1 Y 3 L s07—
= Negative, output -1 E&V




Multiclass Decision Rule

= |f we have more than wq - f biggest

two classes:
= Have a weight vector for \\/

each class: w,,
' wp - f w3 - f

= Calculate an activation for biggest \ biggest
each class

activationy(x,y) = wy - f(x)

= Highest activation wins

y = arg max (activationu(z,y))



The Multi-class Perceptron Alg.

= Start with zero weights

= [terate training examples
= Classify with current weights

y = argmax, wy - f(x)
= argmax, >; wy ;- fi(x)

» |f correct, no change!

* |f wrong: lower score of wrong
answer, raise score of right answer W,/

wy — f(x)
wy+ + f(x)

?U-y

’l l}? 'l / *



Examples: Perceptron

= Separable Case

speed 1
b 1 factor 1.0
Q
X 1.000 -0.062
1.6 0.901
o) B x
1.6 -0.094
[s] -3.
® [s)
x
)
x
@
x

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html


http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html
http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

Examples: Perceptron

» |nseparable Case

speed 1

factor 1.0

1.000 -0.017
x 0.765
0.146

http://isl.ira.uka.de/neuralNetCourse/2004/VL 11 5/Perceptron.html



http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html
http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

Mistake-Driven Classification

= For Nalve Bayes:
» Parameters from data statistics
» Parameters: probabilistic interpretation
* Training: one pass through the data

= For the perceptron:
» Parameters from reactions to mistakes
= Parameters: discriminative
iInterpretation

* Training: go through the data until held-
out accuracy maxes out

Training
Data

Held-Out
Data

Test
Data




Properties of Perceptrons

= Separability: some parameters get
the training set perfectly correct

= Convergence: if the training is
separable, perceptron will
eventually converge (binary case)

» Mistake Bound: the maximum
number of mistakes (binary case)
related to the margin or degree of
separability

, k
Mmistakes < 5—2

Separable



Problems with the Perceptron

= Noise: if the data isn’'t separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

* »
: : : : - * »
= Mediocre generalization: finds a - "
“barely” separating solution - o=
training
_ >
= Overtraining: test / held-out .
accuracy usually rises, then falls > et
. . . " es
= Qvertraining is a kind of overfitting O Sy

iterations



Fixing the Perceptron

Wy

= |dea: adjust the weight update to
mitigate these effects

= MIRA*: choose an update size that
fixes the current mistake...

= ... but, minimizes the change tow

2
min —Z||uy wy ||
Guessed vy instead of y* on

wyx - f(x) > wy - f(x) +1 example = with features f(x)

o I
= The +1 helps to generalize Wy = Wy — Tf(x)
* Margin Infused Relaxed Algorithm wy* — , -|— Tf(:l?)



Minimum Correcting Update

!

. -~ ’ i s
min - %. |wy — wi|| wy = wy, — 7 f(x)
- — /
Way* - T ZWypefitel wy* T wy* + Tf(CC)
min ||7f]|?
Wy« f 2wy - f+ 1 Ey* ]
>
(Wi +7f) - f = (wly—7f) - f + 1 7 =0
" | min not T=0, or would not
('“‘f_, - “'_ff) - F 1+ 1 have made an error, SO min

O f will be where equality holds



Maximum Step Size

In practice, it's also bad to make updates that

are too large
= Example may be labeled incorrectly
*= You may not have enough features

= Solution: cap the maximum possible
value of T with some constant C

) (wy, —wis) - f+1
77 = min ( 4 J " &

2f-f

= Corresponds to an optimization that
assumes non-separable data

» Usually converges faster than perceptron
» Usually better, especially on noisy data

-




Linear Separators

= Which of these linear separators is optimal?




Support Vector Machines

Maximizing the margin: good according to intuition, theory, practice
Only support vectors matter; other training examples are ignorable
Support vector machines (SVMs) find the separator with max margin
Basically, SVMs are MIRA where you optimize over all examples at

once MIRA

g 2 .
min —||w u"| .
w 2

wy - f(x;) = wy - f(z;) + 1

SVM

gl
min llu‘H2
w P,

Vi,y wye - f2i) > wy - fla;) + 1




Classification: Comparison

= Nalve Bayes
= Builds a model training data
= Gives prediction probabilities
= Strong assumptions about feature independence
* One pass through data (counting)

= Perceptrons / MIRA:
» Makes less assumptions about data
» Mistake-driven learning
» Multiple passes through data (prediction)
= Often more accurate



Extension: Web Search

_ _ x = “Apple Computers”
= |nformation retrieval:

» Given information needs, Apple Inc.
produce information
* Includes, e.g. web search,

guestion answering, and
classic IR

Apple Inc.

Apple
From Whigeda e Yor oncrchseda

= Web search: not exactly
classification, but rather S [E—
ranking e T




Feature-Based Ranking

x = “Apple Computers”

Apple

™e s the A e of
F(x [ —| ) = [0.3500 ...]
JOMRsice n he L
- MO0 R 15 one of the most wadely
ned tree fruts. The tree 5 smal

AAAAAAAAA

f(x T D=1[08421..]




Perceptron for Ranking

" Inputs & w
= Candidates Y

= Many feature vectors: f(x,y) flz,y) w
= One weight vector: w 2™
= Prediction: JAT

.l/ — arg max(/ {195 ‘f(:[,'-’ 'l/) ,f(-l'- 'I//)

= Update (if wrong):

w=w+F f(z,y") — f(z,y)



Pacman Apprenticeship!

= Examples are states s

“correct”
» Candidates are pairs (s,a) action a”
= “Correct” actions: those taken by expert
= Features defined over (s,a) pairs: f(s,a) Va £ a*.
= Score of a g-state (s,a) given by: w- f(a*) >w- f(a)

w - f(s,a)

= How is this VERY different from reinforcement learning?



Case-Based Reasoning

= Similarity for classification
» Case-based reasoning

= Predict an instance’s label using
similar instances

= Nearest-neighbor classification

= 1-NN: copy the label of the most
similar data point

= K-NN: let the k nearest neighbors
vote (have to devise a weighting
scheme)

» Key issue: how to define similarity

» Trade-off:
= Small k gives relevant neighbors
= Large k gives smoother functions
= Sound familiar?




Parametric / Non-parametric

= Parametric models:
» Fixed set of parameters
» More data means better settings
= Non-parametric models:
= Complexity of the classifier increases with data
= Better in the limit, often worse in the non-limit Truth

= (K)NN is non-parametric

2 Examples 10 Examples 100 Examples



http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

Nearest-Neighbor Classification

= Nearest neighbor for digits:
= Take new image
= Compare to all training images t‘
= Assign based on closest example

= Encoding: image is vector of intensities:

1 =+0.0:0.0 9.3 08 0.7'0.1 ..+:0.0)

= What's the similarity function?
» Dot product of two images vectors?

sim(z, i'l?,) =z.z = Z Zl?j:l-‘-‘,i
]

= Usually normalize vectors so ||x|| = 1
= min =0 (when?), max =1 (when?)

’
(
)
O
/
=



Basic Similarity

= Many similarities based on feature dot products:

sim(z,2') = f(x) - f(z') =3 fi(2) fi(a")
0
= |f features are just the pixels:
sim(z,z’) =z -2’ = szxs

L

= Note: not all similarities are of this form



Invariant Metrics

= Better distances use knowledge about vision

= |nvariant metrics:
= Similarities are invariant under certain transformations
» Rotation, scaling, translation, stroke-thickness...
» E.g:

= 16 x 16 = 256 bixels; é point in 256-dim space
= Small similarity in R2°6 (why?)

= How to incorporate invariance into similarities?

Re——

This and next few slides adapted from Xiao Hu, UIUC



Template Deformation

= Deformable templates:

» An “ideal” version of each category &
= Best-fit to image using min variance | ]
= Cost for high distortion of template p

= Cost for image points being far from distorted template
= Used in many commercial digit recognizers

Examples from [Hastie 94]



A Tale of Two Approaches...

= Nearest neighbor-like approaches
= Can use fancy similarity functions
= Don't actually get to do explicit learning

= Perceptron-like approaches
= Explicit training to reduce empirical error
» Can’t use fancy similarity, only linear
= Or can they? Let’s find out!



Perceptron Weights

= What is the final value of a weight w, of a perceptron?
= Can it be any real vector?

= No! It's built by adding up inputs.

vy =0+ f(x1) — f(as) + .
Wy = Z iy J ()

= Can reconstruct weight vectors (the primal representation)
from update counts (the dual representation)

&y = <0‘1,y X2y --- an,y)



Dual Perceptron

= How to classify a new example x?

score(y,z) = wy - f(x)
— (Z 5 f(ll)) ' f(.CU)
— L e TRY (f(a:z) f(x))
— L gy K (i)

» |f someone tells us the value of K for each pair of
examples, never need to build the weight vectors!



Dual Perceptron

Start with zero counts (alpha)
Pick up training instances one by one
Try to classify x,,

y = argmaxy > a; . K(z;, )

If correct, no change!

If wrong: lower count of wrong class (for this instance),
raise score of right class (for this instance)

ayn = ayn — 1 wy = wy — f(z)

(yy*tn’ — aq*” + 1 “.!/:-: — 11’,(/:+: + /<1>



Kernelized Perceptron

» |[f we had a black box (kernel) which told us the dot
product of two examples x and y:

» Could work entirely with the dual representation
* No need to ever take dot products (“kernel trick™)

score(y,x) = wy - f(x)

—— X &gy K($Za 37)
)

= |ike nearest neighbor — work with black-box similarities
= Downside: slow if many examples get nonzero alpha



Kernels: Who Cares?

= So far: a very strange way of doing a very simple
calculation

= “Kernel trick”: we can substitute any™ similarity
function in place of the dot product

= |ets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain
technical requirements, lots of proofs break.

E.g. convergence, mistake bounds. In practice,
illegal kernels sometimes work (but not always).



Non-Linear Separators

= Data that is linearly separable (with some noise) works out great:

— |®_. >

= But what are we going to do if the dataset is just too hard?

*—@ *—0— 00— *—@ o>
0 X

= How about... mapping data to a hlgher-dlmenS|onaI space:

This and next few slides adapted from Ray Mooney, UT



Non-Linear Separators

General idea: the original feature space can always be
mapped to some higher-dimensional feature space
where the training set is separable:
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Why Kernels?

= Can't you just add these features on your own (e.g. add
all pairs of features instead of using the quadratic
kernel)?
» Yes, in principle, just compute them
= No need to modify any algorithms
= But, number of features can get large (or infinite)

= Some kernels not as usefully thought of in their expanded
representation, e.g. RBF or data-defined kernels [Henderson
and Titov 09]

= Kernels let us compute with these features implicitly

= Example: implicit dot product in quadratic kernel takes much less
space and time per dot product

= Of course, there’s the cost for using the pure dual algorithms:
you need to compute the similarity to every training datum



Recap: Classification

= Classification systems:
= Supervised learning

* Make a prediction given
evidence

= \We’ve seen several
methods for this

= Useful when you have
labeled data




Clustering

= Clustering systems:
= Unsupervised learning

= Detect patterns in
unlabeled data

= E.g. group emails or
search results

= E.g. find categories of
customers

= E.g. detect anomalous
program executions

» Useful when don’t know
what you're looking for

= Requires data, but no
labels

= Often get gibberish




Clustering

= Basic idea: group together similar instances
= Example: 2D point patterns

© 00 coo0o0Coy00
O

000 H00C0 -0

OO

= \What could “similar” mean?
= One option: small (squared) Euclidean distance

dist(z,v) = (1) T (@~ v) = ¥ (i — 1)



K-Means

= An iterative clustering
algorithm

* Pick K random points
as cluster centers
(means)

= Alternate:

= Assign data instances
to closest mean

= Assign each mean to
the average of its
assigned points
= Stop when no points’
assignments change




K-Means Example




K-Means as Optimization

= Consider the total distance to the means:

o({z;}, {a;}, {cx}) = ) dist(z;, cq;)
N

points means
assignments

= Each iteration reduces phi V

= Two stages each iteration: Eo
= Update assignments: fix means c, .7' e
change assignments a
» Update means: fix assignments a,
change means c



Initialization

= K-means IS hon-deterministic

Requires initial means
It does matter what you pick!

What can go wrong?

Various schemes for preventing
this kind of thing: variance-
based split / merge, initialization
heuristics



K-Means Getting Stuck

= Alocal optimum:

Why doesn't this work out like
the earlier example, with the
purple taking over half the blue?



K-Means Questions

Will K-means converge”?
= To a global optimum?

Will it always find the true patterns in the data?
= |f the patterns are very very clear?

Will it find something interesting?
Do people ever use it?

How many clusters to pick?



Agglomerative Clustering

= Agglomerative clustering:
= First merge very similar instances

» |[ncrementally build larger clusters out
of smaller clusters

= Algorithm:
= Maintain a set of clusters

= |nitially, each instance in its own
cluster

» Repeat:
= Pick the two closest clusters

= Merge them into a new cluster
= Stop when there’s only one cluster left

= Produces not one clustering, but a family
of clusterings represented by a
dendrogram

., e
-

28\



Agglomerative Clustering

= How should we define
“closest” for clusters with
multiple elements?

= Many options
» Closest pair (single-link
clustering)

» Farthest pair (complete-link
clustering)

= Average of all pairs
= Ward’s method (min variance,

like k-means)
= Different choices create L
different clustering behaviors




Clustering Application
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