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Announcements
 Syllabus revised

Machine learning focus
 We will do mini-project status reports 

during last class, on Thursday
 Instructions were emailed and are on 

web page



Outline
 Learning: Naive Bayes and Perceptron

 (Recap) Perceptron
 MIRA
 SVMs
 Linear Ranking Models
 Nearest neighbor
 Kernels
 Clustering



Generative vs. Discriminative

 Generative classifiers:
 E.g. naïve Bayes
 A joint probability model with evidence variables
 Query model for causes given evidence

 Discriminative classifiers:
 No generative model, no Bayes rule, often no 

probabilities at all!
 Try to predict the label Y directly from X
 Robust, accurate with varied features
 Loosely: mistake driven rather than model driven



(Recap) Linear Classifiers

 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1

Σ
f1
f2
f3

w1

w2

w3
>0?



Multiclass Decision Rule

 If we have more than 
two classes:
 Have a weight vector for 

each class:
 Calculate an activation for 

each class

 Highest activation wins



The Multi-class Perceptron Alg.

 Start with zero weights
 Iterate training examples

 Classify with current weights

 If correct, no change!
 If wrong: lower score of wrong 

answer, raise score of right answer



Examples: Perceptron
 Separable Case

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html
http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html


Examples: Perceptron
 Inseparable Case

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html

http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html
http://isl.ira.uka.de/neuralNetCourse/2004/VL_11_5/Perceptron.html


Mistake-Driven Classification

 For Naïve Bayes:
 Parameters from data statistics
 Parameters: probabilistic interpretation
 Training: one pass through the data

 For the perceptron:
 Parameters from reactions to mistakes
 Parameters: discriminative 

interpretation
 Training: go through the data until held-

out accuracy maxes out

Training
Data

Held-Out
Data

Test
Data



Properties of Perceptrons

 Separability: some parameters get 
the training set perfectly correct

 Convergence: if the training is 
separable, perceptron will 
eventually converge (binary case)

 Mistake Bound: the maximum 
number of mistakes (binary case) 
related to the margin or degree of 
separability

Separable

Non-Separable



Problems with the Perceptron

 Noise: if the data isn’t separable, 
weights might thrash
 Averaging weight vectors over time 

can help (averaged perceptron)

 Mediocre generalization: finds a 
“barely” separating solution

 Overtraining: test / held-out 
accuracy usually rises, then falls
 Overtraining is a kind of overfitting



Fixing the Perceptron
 Idea: adjust the weight update to 

mitigate these effects

 MIRA*: choose an update size that 
fixes the current mistake…

 … but, minimizes the change to w

 The +1 helps to generalize

* Margin Infused Relaxed Algorithm



Minimum Correcting Update

min not τ=0, or would not 
have made an error, so min 
will be where equality holds



Maximum Step Size
 In practice, it’s also bad to make updates that 

are too large
 Example may be labeled incorrectly
 You may not have enough features
 Solution: cap the maximum possible 

value of τ with some constant C

 Corresponds to an optimization that 
assumes non-separable data

 Usually converges faster than perceptron
 Usually better, especially on noisy data



Linear Separators

 Which of these linear separators is optimal? 



Support Vector Machines
 Maximizing the margin: good according to intuition, theory, practice
 Only support vectors matter; other training examples are ignorable 
 Support vector machines (SVMs) find the separator with max margin
 Basically, SVMs are MIRA where you optimize over all examples at 

once MIRA

SVM



Classification: Comparison

 Naïve Bayes
 Builds a model training data
 Gives prediction probabilities
 Strong assumptions about feature independence
 One pass through data (counting)

 Perceptrons / MIRA:
 Makes less assumptions about data
 Mistake-driven learning
 Multiple passes through data (prediction)
 Often more accurate



Extension: Web Search

 Information retrieval:
 Given information needs, 

produce information
 Includes, e.g. web search, 

question answering, and 
classic IR

 Web search: not exactly 
classification, but rather 
ranking

x = “Apple Computers”



Feature-Based Ranking

x = “Apple Computers”

x,

x,



Perceptron for Ranking

 Inputs    
 Candidates
 Many feature vectors: 
 One weight vector:

 Prediction:

 Update (if wrong):



Pacman Apprenticeship!
 Examples are states s

 Candidates are pairs (s,a)
 “Correct” actions: those taken by expert
 Features defined over (s,a) pairs: f(s,a)
 Score of a q-state (s,a) given by:

 How is this VERY different from reinforcement learning?

“correct” 
action a*



Case-Based Reasoning
 Similarity for classification

 Case-based reasoning
 Predict an instance’s label using 

similar instances

 Nearest-neighbor classification
 1-NN: copy the label of the most 

similar data point
 K-NN: let the k nearest neighbors 

vote (have to devise a weighting 
scheme)

 Key issue: how to define similarity
 Trade-off:

 Small k gives relevant neighbors
 Large k gives smoother functions
 Sound familiar?



Parametric / Non-parametric
 Parametric models:

 Fixed set of parameters
 More data means better settings

 Non-parametric models:
 Complexity of the classifier increases with data
 Better in the limit, often worse in the non-limit Truth

10 Examples 100 Examples 10000 Examples

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html

2 Examples

 (K)NN is non-parametric

http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html
http://www.cs.cmu.edu/~zhuxj/courseproject/knndemo/KNN.html


Nearest-Neighbor Classification
 Nearest neighbor for digits:

 Take new image
 Compare to all training images
 Assign based on closest example

 Encoding: image is vector of intensities:

 What’s the similarity function?
 Dot product of two images vectors?

 Usually normalize vectors so ||x|| = 1
 min = 0 (when?), max = 1 (when?)



Basic Similarity

 Many similarities based on feature dot products:

 If features are just the pixels:

 Note: not all similarities are of this form



Invariant Metrics

This and next few slides adapted from Xiao Hu, UIUC

 Better distances use knowledge about vision
 Invariant metrics:

 Similarities are invariant under certain transformations
 Rotation, scaling, translation, stroke-thickness…
 E.g: 

 16 x 16 = 256 pixels; a point in 256-dim space
 Small similarity in R256 (why?)

 How to incorporate invariance into similarities?



Template Deformation

 Deformable templates:
 An “ideal” version of each category
 Best-fit to image using min variance
 Cost for high distortion of template
 Cost for image points being far from distorted template

 Used in many commercial digit recognizers

Examples from [Hastie 94]



A Tale of Two Approaches…

 Nearest neighbor-like approaches
 Can use fancy similarity functions
 Don’t actually get to do explicit learning

 Perceptron-like approaches
 Explicit training to reduce empirical error
 Can’t use fancy similarity, only linear
 Or can they?  Let’s find out!



Perceptron Weights
 What is the final value of a weight wy of a perceptron?

 Can it be any real vector?

 No!  It’s built by adding up inputs.

 Can reconstruct weight vectors (the primal representation) 
from update counts (the dual representation)



Dual Perceptron
 How to classify a new example x?

 If someone tells us the value of K for each pair of 
examples, never need to build the weight vectors!



Dual Perceptron

 Start with zero counts (alpha)
 Pick up training instances one by one
 Try to classify xn,

 If correct, no change!
 If wrong: lower count of wrong class (for this instance), 

raise score of right class (for this instance)



Kernelized Perceptron

 If we had a black box (kernel) which told us the dot 
product of two examples x and y:
 Could work entirely with the dual representation
 No need to ever take dot products (“kernel trick”)

 Like nearest neighbor – work with black-box similarities
 Downside: slow if many examples get nonzero alpha



Kernels: Who Cares?

 So far: a very strange way of doing a very simple 
calculation

 “Kernel trick”: we can substitute any* similarity 
function in place of the dot product

 Lets us learn new kinds of hypothesis

* Fine print: if your kernel doesn’t satisfy certain 
technical requirements, lots of proofs break.  
E.g. convergence, mistake bounds.  In practice, 
illegal kernels sometimes work (but not always).



Non-Linear Separators

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional space:

0

0

0

x2

x

x

x

This and next few slides adapted from Ray Mooney, UT

 Data that is linearly separable (with some noise) works out great:



Non-Linear Separators

 General idea: the original feature space can always be 
mapped to some higher-dimensional feature space 
where the training set is separable:

Φ:  x → φ(x)

41



Why Kernels?

 Can’t you just add these features on your own (e.g. add 
all pairs of features instead of using the quadratic 
kernel)?
 Yes, in principle, just compute them
 No need to modify any algorithms
 But, number of features can get large (or infinite)
 Some kernels not as usefully thought of in their expanded 

representation, e.g. RBF or data-defined kernels [Henderson 
and Titov 05]

 Kernels let us compute with these features implicitly
 Example: implicit dot product in quadratic kernel takes much less 

space and time per dot product
 Of course, there’s the cost for using the pure dual algorithms: 

you need to compute the similarity to every training datum



Recap: Classification

 Classification systems:
 Supervised learning
 Make a prediction given 

evidence
 We’ve seen several 

methods for this
 Useful when you have 

labeled data



Clustering

 Clustering systems:
 Unsupervised learning
 Detect patterns in 

unlabeled data
 E.g. group emails or 

search results
 E.g. find categories of 

customers
 E.g. detect anomalous 

program executions
 Useful when don’t know 

what you’re looking for
 Requires data, but no 

labels
 Often get gibberish



Clustering

 Basic idea: group together similar instances
 Example: 2D point patterns

 What could “similar” mean?
 One option: small (squared) Euclidean distance



K-Means

 An iterative clustering 
algorithm
 Pick K random points 

as cluster centers 
(means)

 Alternate:
 Assign data instances 

to closest mean
 Assign each mean to 

the average of its 
assigned points

 Stop when no points’ 
assignments change



K-Means Example



K-Means as Optimization

 Consider the total distance to the means:

 Each iteration reduces phi

 Two stages each iteration:
 Update assignments: fix means c,
        change assignments a
 Update means: fix assignments a,
        change means c

points
assignments

means



Initialization

 K-means is non-deterministic
 Requires initial means
 It does matter what you pick!

 What can go wrong?

 Various schemes for preventing 
this kind of thing: variance-
based split / merge, initialization 
heuristics



K-Means Getting Stuck

 A local optimum:

Why doesn’t this work out like 
the earlier example, with the 
purple taking over half the blue?



K-Means Questions

 Will K-means converge?
 To a global optimum?

 Will it always find the true patterns in the data?
 If the patterns are very very clear?

 Will it find something interesting?

 Do people ever use it?

 How many clusters to pick?

 



Agglomerative Clustering

 Agglomerative clustering:
 First merge very similar instances
 Incrementally build larger clusters out 

of smaller clusters

 Algorithm:
 Maintain a set of clusters
 Initially, each instance in its own 

cluster
 Repeat:

 Pick the two closest clusters
 Merge them into a new cluster
 Stop when there’s only one cluster left

 Produces not one clustering, but a family 
of clusterings represented by a 
dendrogram



Agglomerative Clustering

 How should we define 
“closest” for clusters with 
multiple elements?

 Many options
 Closest pair (single-link 

clustering)
 Farthest pair (complete-link 

clustering)
 Average of all pairs
 Ward’s method (min variance, 

like k-means)

 Different choices create 
different clustering behaviors



Clustering Application
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Top-level categories:  
supervised classification

Story groupings:
unsupervised clustering


