CSE 573: Artificial Intelligence Autumn 2010

Lecture 9: RL / Probability Review 10/28/2010

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Reinforcement Learning
 - (review) Q-learning
 - (finish) Linear function approximation
 - Policy Iteration (optional)
 - POMDPs (definition only)
- Probability review
 - Random Variables and Events
 - Joint / Marginal / Conditional Distributions
 - Product Rule, Chain Rule, Bayes' Rule
 - Probabilistic Inference

Recap: Reinforcement Learning

- Reinforcement learning:
 - Still have an MDP:
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
 - Still looking for a policy $\pi(s)$
 - New twist: don't know T or R
 - I.e. don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Recap: Q-Value Iteration

- Value iteration: find successive approx optimal values
 - Start with $V_0^*(s) = 0$
 - Given V_i*, calculate the values for all states for depth i+1:

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- But Q-values are more useful!
 - Start with $Q_0^*(s,a) = 0$
 - Given Q_i*, calculate the q-values for all q-states for depth i+1:

$$Q_{i+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_i(s', a') \right]$$

Recap: Q-Learning Update

Q-Learning: sample-based Q-value iteration

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$

- Learn Q*(s,a) values
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

$$sample = r + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Recap: Exploration / Exploitation

- Several schemes for action selection
 - Simplest: random actions (ε greedy)
 - Every time step, flip a coin
 - With probability ε, act randomly
 - With probability 1-ε, act according to current policy
 - Problems with random actions?
 - You do explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Q-Learning: ε Greedy

Q-Learning Final Solution

• Q-learning produces tables of q-values:

Q-Learning

- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar states
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q learning, we know nothing about related states and their q values:

Or even this third one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Function Approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear q-functions:

$$transition = (s, a, r, s')$$

$$difference = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \qquad \text{Exact Q's}$$

$$w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \qquad \text{Approximate Q's}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g. if something unexpectedly bad happens, disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a)=4.0f_{DOT}(s,a)-1.0f_{GST}(s,a)$$

$$f_{DOT}(s,\mathsf{NORTH})=0.5$$

$$f_{GST}(s,\mathsf{NORTH})=1.0$$

$$Q(s,a)=+1$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] \, 0.5$$

$$w_{GST} \leftarrow -1.0 + \alpha [-501] \, 1.0$$

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

$$a = \text{NORTH}$$

 $r = -500$

Linear Regression

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Ordinary Least Squares (OLS)

total error =
$$\sum_{i} (y_i - \hat{y}_i)^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Minimizing Error

Imagine we had only one point x with features f(x):

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = -\left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update:

"target" "prediction"
$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

Overfitting

Which Algorithm?

Q-learning, no features, 50 learning trials:

Which Algorithm?

Q-learning, no features, 1000 learning trials:

Which Algorithm?

Q-learning, simple features, 50 learning trials:

- Problem: often the feature-based policies that work well aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions
 - We'll see this distinction between modeling and prediction again later in the course
- Solution: learn the policy that maximizes rewards rather than the value that predicts rewards
- This is the idea behind policy search, such as what controlled the upside-down helicopter

Simplest policy search:

- Start with an initial linear value function or q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:

- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

- Advanced policy search:
 - Write a stochastic (soft) policy:

$$\pi_w(s) \propto e^{\sum_i w_i f_i(s,a)}$$

- Turns out you can efficiently approximate the derivative of the returns with respect to the parameters w (details in the book, optional material)
- Take uphill steps, recalculate derivatives, etc.

Review: MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state dist. b₀

Partially observable MDPs

- Markov decision processes:
 - States S
 - Actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)
 - Start state distribution b₀=P(s₀)

- POMDPs, just add:
 - Observations O
 - Observation model P(o|s,a) (or O(s,a,o))

A POMDP: Ghost Hunter

POMDP Computations

- Sufficient statistic: belief states
 - $b_0 = P(s_0)$

$$b(s') = P(s'|o, a, b)$$

$$= \frac{O(s', a, o) \sum_{s \in S} T(s, a, s')b(s)}{P(o|a, b)}$$

- POMDPs search trees
 - max nodes are belief states
 - expectation nodes branch on possible observations
 - (this is motivational; we will not discuss in detail)

Probability Review

- Probability
 - Random Variables
 - Joint and Marginal Distributions
 - Conditional Distribution
 - Product Rule, Chain Rule, Bayes' Rule
 - Inference
- You'll need all this stuff A LOT for the next few weeks, so make sure you go over it now!

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost

On the ghost: red

1 or 2 away: orange

3 or 4 away: yellow

■ 5+ away: green

Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Uncertainty

General situation:

- Evidence: Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
- Hidden variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

Unobserved random variables have distributions

$$P(T)$$
 T P warm 0.5 cold 0.5

W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1 \qquad P(rain) = 0.1$$

$$P(rain) = 0.1$$

Must have:

$$\forall x P(x) \ge 0$$
 $\sum_{x} P(x) = 1$

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, ... X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

P(T,W)

- Size of distribution if n variables with domain sizes d?
- Must obey:

$$P(x_1, x_2, \dots x_n) \ge 0$$

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

- A probabilistic model is a joint distribution over variables of interest
- For all but the smallest distributions, impractical to write out

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(t) = \sum_{w} P(t, w)$$

$$P(w) = \sum_{t} P(t, w)$$

D	1	τ	٦٦
	l	1)

Т	Р
hot	0.5
cold	0.5

P(W)

W	Р
sun	0.6
rain	0.4

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$P(W = r | T = c) = ???$$

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T = hot)8.0 sun P(W|T)0.2 rain P(W|T=cold)0.4 sun 0.6 rain

Joint Distribution

P(T,W)

Т	WP	
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

- A trick to get a whole conditional distribution at once:
 - Select the joint probabilities matching the evidence
 - Normalize the selection (make it sum to one)

P(T,W)				
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

5	Select	$P(T,r) \xrightarrow{Normalize} P(T r)$				
		P(T,r)			P(I	$ r\rangle$
	Т	R	Р		Τ	Р
	hot	rain	0.1		hot	0.25
	cold	rain	0.3		cold	0.75

Why does this work? Sum of selection is P(evidence)! (P(r), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated

Inference by Enumeration

P(sun)?

P(sun | winter)?

P(sun | winter, warm)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

Inference by Enumeration

General case:

- Evidence variables: $E_1 \dots E_k = e_1 \dots e_k$ Query* variable: Q Hidden variables: $H_1 \dots H_r$
- We want: $P(Q|e_1 \dots e_k)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} \underbrace{P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$

- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \qquad P(x,y) = P(x|y)P(y)$$

Example:

P(D,W)

D	1	W	١
Γ	ĺ	VV	J

R	Р	
sun	8.0	
rain	0.2	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

D	W	Р
wet	sun	0.08
dry	sun	0.72
wet	rain	0.14
dry	rain	0.06

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

Why is this always true?

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

That's my rule!

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!

Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})}$$

- Example:
 - m is meningitis, s is stiff neck

$$P(s|m)=0.8$$
 $P(m)=0.0001$ Example givens $P(s)=0.1$

$$P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Ghostbusters, Revisited

- Let's say we have two distributions:
 - Prior distribution over ghost location: P(G)
 - Let's say this is uniform
 - Sensor reading model: P(R | G)
 - Given: we know what our sensors do
 - R = reading color measured at (1,1)
 - E.g. P(R = yellow | G=(1,1)) = 0.1

$$P(g|r) \propto P(r|g)P(g)$$

