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Outline

= Reinforcement Learning
* (review) Q-learning
= (finish) Linear function approximation
= Policy Iteration (optional)
» POMDPs (definition only)
= Probability review
= Random Variables and Events
= Joint / Marginal / Conditional Distributions
* Product Rule, Chain Rule, Bayes’ Rule
* Probabilistic Inference




Recap: Reinforcement Learning

= Reinforcement learning:

= Still have an MDP:

= Asetof statess €S T,/"\
= A set of actions (per state) A L/,) /

= Amodel T(s,a,s’)
= Areward function R(s,a,s’)

= Still looking for a policy nt(s)

= New twist: don't know T or R
= |.e. don’t know which states are good or what the actions do
= Must actually try actions and states out to learn



Recap: Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,(s) =0
= Given V/, calculate the values for all states for depth i+1:

Vit1(8) « max Z} T(s,a,s’) {R(s, a,s’) +~ \,(s’)]

= But Q-values are more useful!
= Start with Q,(s,a) =0
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qir1(s,a) «— Z T(s,a,s’) {R(s. a,s’) +~ max Q,; (s, a")
S'/

a



Recap: Q-Learning Update

= Q-Learning: sample-based Q-value iteration
Q" (s,a) = Z T(s,a,s") [R(s, a,s’) +~ max Q* (¢, (1')]

= Learn Q*(s,a) values
= Receive a sample (s,a,s’,r)
» Consider your old estimate: Q(s,a)
» Consider your new sample estimate:
sample = r + max Q(s',a)

» |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (o) [sample]



Recap: Exploration / Exploitation

= Several schemes for action selection

= Simplest: random actions (e greedy)
= Every time step, flip a coin
= With probability €, act randomly
= With probability 1-¢, act according to current policy

= Problems with random actions?

= You do explore the space, but keep thrashing
around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions



Q-Learning: ¢ Greedy
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Q-Learning Final Solution

= Q-learning produces tables of g-values:




Q-Learning

* |n realistic situations, we cannot possibly learn
about every single state!
* Too many states to visit them all in training
» Too many states to hold the g-tables in memory

* Instead, we want to generalize:

» |earn about some small number of training states
from experience
» Generalize that experience to new, similar states

* This is a fundamental idea in machine learning, and
we’ll see it over and over again



Example: Pacman

» | et's say we discover
through experience
that this state Is bad:

* In nalve g learning,
we know nothing
about related states
and their g values:

= Or even this third one!




Feature-Based Representations

= Solution: describe a state using
a vector of features (properties)
= Features are functions from states
to real numbers (often 0/1) that
capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
Number of ghosts
1/ (dist to dot)?
Is Pacman in a tunnel? (0/1)
...... etc.
= |s it the exact state on this slide?

» Can also describe a g-state (s, a) with
features (e.g. action moves closer to food)




Function Approximation

Q(s,a) = wqf1(s,a)dFwsrfo(s,a)4+...+wnfn(s,a)

= Q-learning with linear g-functions:

transition = (s,a.r,s’)

difference = lr + v max Q(s, (1')] - Q(s,a)
Q(s,a) — Q(s,a) + « [difference] Exact Q’s

w; — w; + a [difference] f;(s,a) Approximate Q's

* Intuitive interpretation:
» Adjust weights of active features

» E.g. if something unexpectedly bad happens, disprefer all states
with that state’s features

= Formal justification: online least squares



Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgs7r(s,a)
fpor(s, NORTH) = 0.5
fasr(s, NORTH) = 1.0

s.a) = —+1
Q( ) L a= NORIT'H

r 500
correction = —501

Ry A 4.0 8 [—501] 0.5
e 0 s —1.0 + X [—50 1] 1.0

Q(s,a) =3.0fpor(s,a) — 3.0fgst(s,a)




Linear Regression
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f1(x)

Prediction Prediction
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Ordinary Least Squares (OLS)

2
total error = Z (y; — ;z]z;)z =) (.u; = Z“‘z.-.fz.-(-l';))

; 2 k

. Error or “residual’
Observation Y

Prediction g




Minimizing Error

Imagine we had only one point x with features f(x):

1

2
error(w) = 5 (y - Z u'kf;‘.(.l-))
k

0 error(w)

dwm

—_ (,l/ - Z u*k.fk(:l?)) f,,,‘(."l.’-)
k

Wm — Wm, + & (y — Z u',\.f,\.(:r)) fm(x)
A.

Approximate q update:

“target” “prediction”

Wm — Wm + o [/' + A max Q(s',a") — Q(s, a)} fm(8,a)
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Which Algorithm?

Q-learning, no features, 50 learning trials:




Which Algorithm?

Q-learning, no features, 1000 learning trials:




Which Algorithm?

Q-learning, simple features, 50 learning trials:




Policy Search®




Policy Search”

= Problem: often the feature-based policies that work well
aren’t the ones that approximate V / Q best

= E.g. your value functions from project 2 were probably horrible
estimates of future rewards, but they still produced good
decisions

= We'll see this distinction between modeling and prediction again
later in the course

= Solution: learn the policy that maximizes rewards
rather than the value that predicts rewards

= This is the idea behind policy search, such as
what controlled the upside-down helicopter



Policy Search”

= Simplest policy search:
= Start with an initial linear value function or g-function

= Nudge each feature weight up and down and see if
your policy is better than before

* Problems:
= How do we tell the policy got better?
* Need to run many sample episodes!
= |f there are a lot of features, this can be impractical



Policy Search”

= Advanced policy search:
» Write a stochastic (soft) policy:

Tw(8) o e2i Wifi(s,a)

»= Turns out you can efficiently approximate the
derivative of the returns with respect to the
parameters w (details in the book, optional material)

= Take uphill steps, recalculate derivatives, etc.



Review: MDPs

= Markov decision processes:
= States S
= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount vy)
» Start state dist. b,




Partially observable MDPs

= Markov decision processes:
= States S
= Actions A
» Transitions P(s’|s,a) (or T(s,a,s’)) )
= Rewards R(s,a,s’) (and discount vy)
Start state distribution b,=P(s,) )

= POMDPs, just add:

* Observations O
= Observation model P(o|s,a) (or O(s,a,0))



A POMDP: Ghost Hunter

SCORE: -19



POMDP Computations

= Sufficient statistic: belief states
n b() == P(SO)

= )(s") = P(s'|o,a,b)

B O(s',a,0) > g1 (s,a,s")b(s)
P(ola,b)

0
= POMDPs search trees A b
* max nodes are belief states
= expectation nodes branch on possible observations
= (this is motivational; we will not discuss in detail)



Probability Review

= Probability
» Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
* Product Rule, Chain Rule, Bayes’ Rule
* |nference

= You'll need all this stuff ALOT for the next few
weeks, so make sure you go over it now!



Inference in Ghostbusters

= Aghostisin the grid
somewhere
= Sensor readings tell
how close a square
IS to the ghost
* On the ghost: red
= 1 or 2 away: orange
= 3 or4 away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) | P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Uncertainty

0.11 0.11

= (General situation:

= Evidence: Agent knows certain 011 .(;,”
things about the state of the world

(e.g., sensor readings or
symptoms)
= Hidden variables: Agent needs to -.-
0.17 010 0.10

reason about other aspects (e.g.

where an object is or what disease
.17

= Model: Agent knows something .
<00 ).0¢ (

about how the known variables

relate to the unknown variables

= Probabilistic reasoning gives us a
framework for managing our -
beliefs and knowledge

0.05




Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty

» R =lsitraining?
= D = How long will it take to drive to work?
» L =Where am I?

= \We denote random variables with capital letters

= Random variables have domains
= Rin {true, false}
= Din [0, o)
* L in possible locations, maybe {(0,0), (0,1), ...}



Probability Distributions

= Unobserved random variables have distributions

W P

. T P P(W
P(T) (W) sun 0.6
warm | 0.5 rain 0.1
meteor 0.0

= A distribution is a TABLE of probabilities of values
= A probability (lower case value) is a single number
P(W =rain) = 0.1 P(rain) = 0.1

* Must have: -
Ve P(x) =0 L Plx) =1
I



Joint Distributions

= A joint distribution over a set of random variables: X1, X2,...Xn
specifies a real number for each assignment (or outcome):

1)(‘\’1 — .7’1. 4\,2 — .112. °c o JX’,I —_— :1?”_) P(Tﬁ “')
P(x1;xo5:::20) T 1w lp
hot | sun | 0.4
= Size of distribution if n variables with domain sizes d? hot | rain | 0.1
cold | sun | 0.2

= Must obey: ol (6 B o TR o) B

Hst Obey . (11‘12' 1”) —O cold | rain | 0.3

Z 1)(477]_9 LDy oo ."I?“) — |

(.171 ..1?2.....1.”)

= A probabilistic model is a joint distribution over variables of interest
= For all but the smallest distributions, impractical to write out



Events

An event is a set E of outcomes

— T W P
P(E) = o & T
(&) Z‘ , (21 ) hot sun 0.4
(z1...xn)EE
hot rain 0.1
From a joint distribution, we can cold | sun 0.2
calculate the probability of any event [~ 1 i, 03

» Probability that it's hot AND sunny?

» Probability that it's hot?
* Probability that it's hot OR sunny?

Typically, the events we care about
are partial assignments, like P(T=hot)




Marginal Distributions

» Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

P(Xyi—=ry) = Y PX =01 X5 ="15)
xro

PO
P(T, W) T i
hot 0.5
T W P Id 0.5
CO .
hot sun 041 P(t) = Z P(t,w)
hot rain 0.1 w F )(”)
cold sun 0.2 — W P
cold | rain 03] P(w) =) P(tw) sun 0.6
rain 0.4




Conditional Probabilities

= Asimple relation between joint and conditional probabilities
» |n fact, this is taken as the definition of a conditional probability

P(al|b) = P&0)
P(b)
P(T,W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

P(a,b)

P(a) P(b)

P( W = r | T = (:) =T



Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

P(W|T = hot) P(T,W)

W P T W P
. sun 0.8 hot | sun 0.4
= rain 0.2 hot rain 0.1
= | P(W|T = cold) cold | sun | 0.2
- cold rain 0.3

W P

sun 0.4

rain 0.6




Normalization Trick

= Atrick to get a whole conditional distribution at once:
» Select the joint probabilities matching the evidence

= Normalize the selection (make it sum to one)

Normalize
— P(T]r)

T P
hot | 0.25
cold | 0.75

P(T, W) Select
T W P |— P(T,r)

hot sun | 0.4 T = P

hot rain | 0.1 hot | rain | 0.1

cold sun | 0.2]| |cold| rain | 0.3

cold rain | 0.3

» Why does this work? Sum of selection is P(evidence)! (P(r), here)

s P(xq,x5) B P(xq,x9)
P(.I.‘l ‘.,1.2) pum— P(;I-;Q) p—

Yoy P(r1,22)




Probabilistic Inference

» Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities
= P(on time | no reported accidents) = 0.90
» These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:

= P(on time | no accidents, 5 a.m.) = 0.95
= P(on time | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated



Inference by Enumeration

= P(sun)?

= P(sun | winter)?

= P(sun | winter, warm)?

S T W P
summer | hot | sun | 0.30
summer | hot | rain | 0.05
summer | cold | sun | 0.10
summer | cold | rain | 0.05

winter | hot | sun | 0.10
winter | hot | rain | 0.05
winter | cold | sun | 0.15
winter | cold | rain | 0.20




Inference by Enumeration

General case:

= Evidence variables: F1...Ep=e¢e1...¢; X1. X0, ... Xn
» Query”* variable: Q |
= Hidden variables:  H;y ... H, All variables

We want: P(Qle1 .. .ep)
First, select the entries consistent with the evidence
Second, sum out H to get joint of Query and evidence:

P(Q,h1...hr,e1...€e
P(Q,eq1...e) = hg.:h.\(z 1 \:.‘1 ‘g
\1.}(2 ..... X 1)

Finally, normalize the remaining entries to conditionalize

Obvious problems:
» Worst-case time complexity O(d")
= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

P(x|ly) = PI()'EQ l)/) <::> P(z,y) = P(z|y)P(y)
Y
= Example: P(DIW) P(D,W)
. w1 P D W P
P(W) wet | sun [0.08
= o wet [ sun| 0.1
dry |sun| 0.9 dry | sun |0.72
sun (0.8 wet lrain | 0.7 wet | rain |0.14
rain |92 "gry [ rain | 0.3 dry | rain |0.06




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(xz1,z2,23) = P(x1)P(x3|x1)P(x3|T1,72)

P(x1,Z5,...%Tn) = H P(z;|lz1...25_1)
2

= Why is this always true?



Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(z,y) = P(z|ly)P(y) = P(y|z)P(x) That's my ruleD

= Dividing, we get:
P(yl|x
P(z|ly) = (y| )P
P(y)
= Why is this at all helpful?
= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems we’ll see later (e.g. ASR, MT)

()

* |n the running for most important Al equation!
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Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:
P(Effect|Cause) P(Cause)

P(Cause|Effect) =

P(Effect)
= Example:
" m is meningitis, s is stiff neck P(""|"”) = 0.8 Example
P(m) = 0.0001 givens
Ple)=—10.1 |
P(sim)P(m 0.8 x 0.0001
R = SEIDEm), . 08 — 0.0008

P(s) 61

= Note: posterior probability of meningitis still very small
= Note: you should still get stiff necks checked out! Why?



Ghostbusters, Revisited

= |Let’'s say we have two distributions: ot o1 B oo
= Prior distribution over ghost location: P(G) | | |
= Let’s say this is uniform
» Sensor reading model: P(R | G)
= Given: we know what our sensors do
= R =reading color measured at (1,1)
= E.g. P(R = yellow | G=(1,1)) = 0.1
= \We can calculate the posterior
distribution P(G]|r) over ghost locations

given a reading using Bayes' rule:

J‘O Ol

P(g|r) o< P(r|g)P(g) -



