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Outline
 Reinforcement Learning 

 (review) Q-learning
 (finish) Linear function approximation
 Policy Iteration (optional)
 POMDPs (definition only)

 Probability review
 Random Variables and Events
 Joint / Marginal / Conditional Distributions
 Product Rule, Chain Rule, Bayes’ Rule
 Probabilistic Inference



Recap: Reinforcement Learning

 Reinforcement learning:
 Still have an MDP:

 A set of states s ∈ S
 A set of actions (per state) A
 A model T(s,a,s’)
 A reward function R(s,a,s’)

 Still looking for a policy π(s)

 New twist: don’t know T or R
 I.e. don’t know which states are good or what the actions do
 Must actually try actions and states out to learn



Recap: Q-Value Iteration

 Value iteration: find successive approx optimal values
 Start with V0

*(s) = 0
 Given Vi

*, calculate the values for all states for depth i+1:

 But Q-values are more useful!
 Start with Q0

*(s,a) = 0
 Given Qi

*, calculate the q-values for all q-states for depth i+1:



Recap: Q-Learning Update
 Q-Learning: sample-based Q-value iteration

 Learn Q*(s,a) values
 Receive a sample (s,a,s’,r)
 Consider your old estimate:

 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

BRIEF ARTICLE

THE AUTHOR

b0 = P (s0)

b(s�) = P (s�|o, a, b)

=
O(s�, a, o)

�
s∈S T (s, a, s�)b(s)

P (o|a, b)

P (t) =
�

w

P (t, w)

P (w) =
�

t

P (t, w)

sample = r + γ max
a�

Q(s�, a�)

1



Recap: Exploration / Exploitation

 Several schemes for action selection

 Problems with random actions?
 You do explore the space, but keep thrashing 

around once learning is done
 One solution: lower ε over time
 Another solution: exploration functions

 Simplest: random actions (ε greedy)
 Every time step, flip a coin
 With probability ε, act randomly
 With probability 1-ε, act according to current policy



Q-Learning: ε Greedy



Q-Learning Final Solution

 Q-learning produces tables of q-values:



Q-Learning

 In realistic situations, we cannot possibly learn 
about every single state!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 Instead, we want to generalize:
 Learn about some small number of training states 

from experience
 Generalize that experience to new, similar states
 This is a fundamental idea in machine learning, and 

we’ll see it over and over again



Example: Pacman

 Let’s say we discover 
through experience 
that this state is bad:

 In naïve q learning, 
we know nothing 
about related states 
and their q values:

 Or even this third one!



Feature-Based Representations

 Solution: describe a state using 
a vector of features (properties)
 Features are functions from states 

to real numbers (often 0/1) that 
capture important properties of the 
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with 
features (e.g. action moves closer to food)



Function Approximation

 Q-learning with linear q-functions:

 Intuitive interpretation:
 Adjust weights of active features
 E.g. if something unexpectedly bad happens, disprefer all states 

with that state’s features

 Formal justification: online least squares

Exact Q’s

Approximate Q’s



Example: Q-Pacman
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Ordinary Least Squares (OLS)
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Minimizing Error

Approximate q update:

Imagine we had only one point x with features f(x):

“target” “prediction”
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Which Algorithm?
Q-learning, no features, 50 learning trials:



Which Algorithm?
Q-learning, no features, 1000 learning trials:



Which Algorithm?
Q-learning, simple features, 50 learning trials:



Policy Search*



Policy Search*

 Problem: often the feature-based policies that work well 
aren’t the ones that approximate V / Q best
 E.g. your value functions from project 2 were probably horrible 

estimates of future rewards, but they still produced good 
decisions

 We’ll see this distinction between modeling and prediction again 
later in the course

 Solution: learn the policy that maximizes rewards 
rather than the value that predicts rewards

 This is the idea behind policy search, such as 
what controlled the upside-down helicopter



Policy Search*

 Simplest policy search:
 Start with an initial linear value function or q-function
 Nudge each feature weight up and down and see if 

your policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical



Policy Search*

 Advanced policy search:
 Write a stochastic (soft) policy:

 Turns out you can efficiently approximate the 
derivative of the returns with respect to the 
parameters w (details in the book, optional material)

 Take uphill steps, recalculate derivatives, etc.



Review: MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state dist. b0

a

s

s, a

s,a,s’
s’



Partially observable MDPs

 Markov decision processes:
 States S
 Actions A
 Transitions P(s’|s,a) (or T(s,a,s’))
 Rewards R(s,a,s’) (and discount γ)
 Start state distribution b0=P(s0) 

 POMDPs, just add:
 Observations O
 Observation model P(o|s,a) (or O(s,a,o))

 a

b

b, a

      o
b’



A POMDP: Ghost Hunter



POMDP Computations

 Sufficient statistic: belief states
  
  

 POMDPs search trees
 max nodes are belief states
 expectation nodes branch on possible observations
 (this is motivational; we will not discuss in detail)

 a

b

b, a

      o
b’
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Probability Review

 Probability
 Random Variables
 Joint and Marginal Distributions
 Conditional Distribution
 Product Rule, Chain Rule, Bayes’ Rule
 Inference

 You’ll need all this stuff A LOT for the next few 
weeks, so make sure you go over it now!



Inference in Ghostbusters

 A ghost is in the grid 
somewhere

 Sensor readings tell 
how close a square 
is to the ghost
 On the ghost: red
 1 or 2 away: orange
 3 or 4 away: yellow
 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

  Sensors are noisy, but we know P(Color | Distance)



Uncertainty

 General situation:
 Evidence: Agent knows certain 

things about the state of the world 
(e.g., sensor readings or 
symptoms)

 Hidden variables: Agent needs to 
reason about other aspects (e.g. 
where an object is or what disease 
is present)

 Model: Agent knows something 
about how the known variables 
relate to the unknown variables

 Probabilistic reasoning gives us a 
framework for managing our 
beliefs and knowledge



Random Variables

 A random variable is some aspect of the world about 
which we (may) have uncertainty
 R = Is it raining?
 D = How long will it take to drive to work?
 L = Where am I?

 We denote random variables with capital letters

 Random variables have domains
 R in {true, false}
 D in [0, ∞)
 L in possible locations, maybe {(0,0), (0,1), …}



Probability Distributions
 Unobserved random variables have distributions

 A distribution is a TABLE of probabilities of values
 A probability (lower case value) is a single number

 Must have: 

T P
warm 0.5
cold 0.5

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0



Joint Distributions
 A joint distribution over a set of random variables:
 specifies a real number for each assignment (or outcome): 

 Size of distribution if n variables with domain sizes d?

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

 Must obey:

 A probabilistic model is a joint distribution over variables of interest
 For all but the smallest distributions, impractical to write out



Events

 An event is a set E of outcomes
T W P

hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

 From a joint distribution, we can 
calculate the probability of any event
 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

 Typically, the events we care about 
are partial assignments, like P(T=hot)



Marginal Distributions
 Marginal distributions are sub-tables which eliminate variables 
 Marginalization (summing out): Combine collapsed rows by adding

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T P
hot 0.5
cold 0.5
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sun 0.6
rain 0.4
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Conditional Probabilities
 A simple relation between joint and conditional probabilities

 In fact, this is taken as the definition of a conditional probability

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Conditional Distributions
 Conditional distributions are probability distributions over 

some variables given fixed values of others

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

W P
sun 0.8
rain 0.2

W P
sun 0.4
rain 0.6

Conditional Distributions Joint Distribution



Normalization Trick
 A trick to get a whole conditional distribution at once:

 Select the joint probabilities matching the evidence
 Normalize the selection (make it sum to one)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

T R P
hot rain 0.1
cold rain 0.3

T P
hot 0.25
cold 0.75

Select Normalize

 Why does this work? Sum of selection is P(evidence)!  (P(r), here)



Probabilistic Inference

 Probabilistic inference: compute a desired probability from 
other known probabilities (e.g. conditional from joint)

 We generally compute conditional probabilities 
 P(on time | no reported accidents) = 0.90
 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95
 P(on time | no accidents, 5 a.m., raining) = 0.80
 Observing new evidence causes beliefs to be updated



Inference by Enumeration

 P(sun)?

 P(sun | winter)?

 P(sun | winter, warm)?

S T W P
summer hot sun 0.30
summer hot rain 0.05
summer cold sun 0.10
summer cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter cold sun 0.15
winter cold rain 0.20



Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables:

 We want:

All variables

 First, select the entries consistent with the evidence
 Second, sum out H to get joint of Query and evidence:

 Finally, normalize the remaining entries to conditionalize

 Obvious problems:
 Worst-case time complexity O(dn) 
 Space complexity O(dn) to store the joint distribution



The Product Rule

 Sometimes have conditional distributions but want the joint

R P
sun 0.8
rain 0.2

D W P
wet sun 0.1
dry sun 0.9
wet rain 0.7
dry rain 0.3

D W P
wet sun 0.08
dry sun 0.72
wet rain 0.14
dry rain 0.06

 Example:



The Chain Rule

 More generally, can always write any joint distribution as 
an incremental product of conditional distributions

 Why is this always true?



Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

That’s my rule!

 Why is this at all helpful?
 Lets us build one conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later (e.g. ASR, MT)

 In the running for most important AI equation!
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Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Note: posterior probability of meningitis still very small
 Note: you should still get stiff necks checked out!  Why?

Example
givens

 Example:
 m is meningitis, s is stiff neck



Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform
 Sensor reading model: P(R | G)

 Given: we know what our sensors do
 R = reading color measured at (1,1)
 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:


