
CSE 573: Artificial Intelligence
Autumn 2010

Lecture 2: Search
10/5/2010

Slides from Dan Klein, Stuart Russell, Andrew Moore

Luke Zettlemoyer

Tuesday, October 5, 2010

Announcements
 Project 0: Python Tutorial

 Online, but not graded

 Project 1: Search
 On the web soon
 Due Friday, Oct 15
 Start early and ask questions. It’s longer than most!

Tuesday, October 5, 2010

Today

 Agents that Plan Ahead

 Search Problems

 Uninformed Search Methods (part review for some)
 Depth-First Search
 Breadth-First Search
 Uniform-Cost Search

 Heuristic Search Methods (new for all)
 Best First / Greedy Search

Tuesday, October 5, 2010

Review: Rational Agents
 An agent is an entity that

perceives and acts.

 A rational agent selects
actions that maximize its
utility function.

 Characteristics of the
percepts, environment, and
action space dictate
techniques for selecting
rational actions.

Search -- the environment is:
fully observable, single agent, deterministic,
episodic, discrete

Agent

Sensors

?

Actuators

Environm
ent

Percepts

Actions

Tuesday, October 5, 2010

Reflex Agents

 Reflex agents:
 Choose action based on

current percept (and
maybe memory)

 Do not consider the
future consequences of
their actions

 Act on how the world IS
 Can a reflex agent be

rational?
 Can a non-rational

agent achieve goals?

Tuesday, October 5, 2010

Famous Reflex Agents

Tuesday, October 5, 2010

Goal Based Agents

 Goal-based agents:
 Plan ahead
 Ask “what if”
 Decisions based on

(hypothesized)
consequences of
actions

 Must have a model of
how the world evolves
in response to actions

 Act on how the world
WOULD BE

Tuesday, October 5, 2010

Search Problems

 A search problem consists of:

 A state space

 A successor function

 A start state and a goal test

 A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Tuesday, October 5, 2010

Example: Romania
 State space:

 Cities

 Successor
function:
 Go to adj city

with cost = dist

 Start state:
 Arad

 Goal test:
 Is state ==

Bucharest?

 Solution?

Tuesday, October 5, 2010

State Space Graphs

 State space graph:
 Each node is a state
 The successor function

is represented by arcs
 Edges may be labeled

with costs
 We can rarely build this

graph in memory (so we
don’t)

S

G

d

b

p q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

Tuesday, October 5, 2010

State Space Sizes?

 Search Problem:
 Eat all of the food

 Pacman positions:
 10 x 12 = 120

 Pacman facing:
 up, down, left, right

 Food Count: 30
 Ghost positions: 12

Tuesday, October 5, 2010

Search Trees

 A search tree:
 Start state at the root node
 Children correspond to successors
 Nodes contain states, correspond to PLANS to those states
 Edges are labeled with actions and costs
 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

Tuesday, October 5, 2010

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

State Graph:

What is the search tree?

Tuesday, October 5, 2010

State Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in the
search tree is an
entire PATH in the
problem graph.

Tuesday, October 5, 2010

Building Search Trees

 Search:
 Expand out possible plans
 Maintain a fringe of unexpanded plans
 Try to expand as few tree nodes as possible

Tuesday, October 5, 2010

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode
is in the book!

Tuesday, October 5, 2010

Review: Depth First Search

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand
deepest node first
Implementation:
Fringe is a LIFO
queue (a stack)

Tuesday, October 5, 2010

Review: Depth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Expansion ordering:
(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

Tuesday, October 5, 2010

Review: Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand
shallowest node
first
Implementation:
Fringe is a FIFO
queue

Tuesday, October 5, 2010

Review: Breadth First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Expansion order:
(S,d,e,p,b,c,e,h,r,q,a,
a,h,r,p,q,f,p,q,f,q,c,G)

Tuesday, October 5, 2010

Search Algorithm Properties

 Complete? Guaranteed to find a solution if one exists?
 Optimal? Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

Variables:
n Number of states in the problem
b The maximum branching factor B

(the maximum number of successors for a state)
C* Cost of least cost solution
d Depth of the shallowest solution
m Max depth of the search tree

Tuesday, October 5, 2010

DFS

 Infinite paths make DFS incomplete…
 How can we fix this?

AlgorithmAlgorithm Complete Optimal Time Space
DFS Depth First

Search
N N O(BLMAX) O(LMAX)

START

GOAL

a

b

N N Infinite Infinite

Tuesday, October 5, 2010

DFS

AlgorithmAlgorithm Complete Optimal Time Space
DFS w/ Path

Checking Y N O(bm) O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

* Or graph search – next lecture.

Tuesday, October 5, 2010

BFS
AlgorithmAlgorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS
Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

…
b 1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

Tuesday, October 5, 2010

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

Tuesday, October 5, 2010

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

 ….and so on.

AlgorithmAlgorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

ID

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y Y* O(bd) O(bd)

…
b

Tuesday, October 5, 2010

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Tuesday, October 5, 2010

Uniform Cost Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Expand
cheapest
node first:
Fringe is
a priority
queue

Tuesday, October 5, 2010

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Expansion order:
(S,p,d,b,e,a,r,f,e,G) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 1

15

1

2

Cost
contours

2

Tuesday, October 5, 2010

Uniform Cost Search
AlgorithmAlgorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

UCS

Y N O(bm) O(bm)

Y Y* O(bd) O(bd)

Y* Y O(bC*/ε) O(bC*/ε)

…
b

C*/ε tiers

Tuesday, October 5, 2010

Uniform Cost Issues

 Remember: explores
increasing cost contours

 The good: UCS is
complete and optimal!

 The bad:
 Explores options in every

“direction”
 No information about goal

location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

Tuesday, October 5, 2010

Uniform Cost: Pac-Man

 Cost of 1 for each action
 Explores all of the states, but one

Tuesday, October 5, 2010

Search Heuristics

 Any estimate of how close a state is to a goal
 Designed for a particular search problem
 Examples: Manhattan distance, Euclidean distance

10

5
11.2

Tuesday, October 5, 2010

Heuristics

Tuesday, October 5, 2010

Best First / Greedy Search
Expand closest node first: Fringe is a priority queue

Tuesday, October 5, 2010

Best First / Greedy Search

 Expand the node that seems closest…

 What can go wrong?

Tuesday, October 5, 2010

Best First / Greedy Search

 A common case:
 Best-first takes you straight

to the (wrong) goal

 Worst-case: like a badly-
guided DFS in the worst
case
 Can explore everything
 Can get stuck in loops if no

cycle checking

 Like DFS in completeness
(finite states w/ cycle
checking)

…
b

…
b

Tuesday, October 5, 2010

To Do:

 Look at the course website:
 http://www.cs.washington.edu/cse573/10au/

 Add yourself to the email list
 Do the readings
 Get started on PS1, when it is posted

Tuesday, October 5, 2010

http://www.cs.washington.edu/cse573/10au/
http://www.cs.washington.edu/cse573/10au/

Search Gone Wrong?

Tuesday, October 5, 2010

