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CSE 573: Artificial Intelligence
Autumn 2012

Introduction & Search

With slides from 
Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer

Dan Weld

Course Logistics
Textbook:  
Artificial Intelligence:  A Modern 
Approach, Russell and Norvig (3rd ed)

Prerequisites: 
• Data Structures (CSE 326 or CSE 322)    

or equivalent
• Understanding of probability, logic

algorithms, comlexity

Work:
Readings (text & papers),         
Programming assignment (40%), 
Written assignments (10%), 
Final project (30%), 
Class participation (10%)

Topics

 Introduction
 Search Methods & Heuristic Construction
 Game Playing (minimax, alpha beta, expectimax)
 Markov Decision Processes & POMDPs
 Reinforcement Learning
 Knowledge Representation & Reasoning
 Logic & Planning

 Contraint Satisfaction

 Uncertainty, Bayesian Networks, HMMs

 Supervised Machine Learning
 Natural Language Processing
 Mixed Human / Machine Computation

Prehistory

 Logical Reasoning: (4th C BC+) Aristotle, George 
Boole, Gottlob Frege, Alfred Tarski

 Probabilistic Reasoning: (16th C+) Gerolamo
Cardano, Pierre Fermat, James Bernoulli, Thomas 
Bayes

and

1940-1950: Early Days

1942: Asimov: Positronic Brain; Three Laws of Robotics
1. A robot may not injure a human being or, through inaction,

allow a human being to come to harm.

2 A robot must obey the orders given to it by human beings2. A robot must obey the orders given to it by human beings, 
except where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such 
protection does not conflict with the First or Second Laws.

1943: McCulloch & Pitts: Boolean circuit model of brain

1946: First digital computer - ENIAC

The Turing Test

Turing (1950) “Computing machinery and intelligence”
 “Can machines think?” 

“Can machines behave intelligently?”

 The Imitation Game:

 Suggested major components of AI: knowledge, 
reasoning, language understanding, learning
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1950-1970: Excitement

1950s: Early AI programs, including 
 Samuel's checkers program, 
Newell & Simon's Logic Theorist, 
Gelernter's Geometry Engine

1956: Dartmouth meeting: “Artificial Intelligence” 
adopted

1965: Robinson's complete algorithm for logical 
reasoning

“Over Christmas, Allen Newell and I created a 
thinking machine.”

-Herbert Simon

1970-1980: Knowledge Based Systems

 1969-79: Early development of knowledge-based systems

 1980-88: Expert systems industry booms

1988 93: Expert systems industry busts 1988-93: Expert systems industry busts

“AI Winter”

The knowledge engineer practices the art of bringing the 
principles and tools of AI research to bear on difficult 
applications problems requiring experts’ knowledge for their 
solution.

- Edward Felgenbaum in “The Art of Artificial Intelligence”

1988--: Statistical Approaches

1985-1990: Rise of Probability and Decision Theory
Eg, Bayes Nets

Judea Pearl  - ACM Turing Award 2011

1990-2000: Machine learning takes over subfields:
Vision, Natural Language, etc.

"Every time I fire a linguist, the performance of the speech
recognizer goes up"

- Fred Jelinek, IBM Speech Team

What is AI?

Think like humans Think rationally

The science of making machines that:

Think like humans Think rationally

Act like humans Act rationally

Designing Rational Agents

 An agent is an entity that 
perceives and acts.

 A rational agent selects 
actions that maximize its 
utility function.  

Agent

Sensors

E
n

viro
n

Percepts

 Characteristics of the 
percepts, environment,
and action space dictate 
techniques for selecting 
rational actions.

 CSE 573
 General AI techniques for a variety of problem types
 Learning to recognize when and how a new problem can be solved 

with an existing technique

?

Actuators

m
en

t

Actions

Rational Decisions

We’ll use the term rational in a particular way:

 Rational: maximally achieving pre-defined goals

 Rational only concerns what decisions are made 

( t th th ht b hi d th )(not the thought process behind them)

 Goals are expressed in terms of the utility of outcomes

 Being rational means maximizing your expected utility

A better title for this course might be:

Computational Rationality
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Can We Build It?

1011 neurons
1014 synapses
cycle time: 10-3 sec

vs

109 transistors
1012 bits of RAM
cycle time: 10-9 sec

vs.

State of the Art

Saying Deep Blue 
doesn’t really think 
about chess is like 
saying an airplane 
d ’t ll fl

“I could feel –
I could smell – a 
new kind of 
intelligence 

May 1997

doesn’t really fly 
because it doesn’t 
flap its wings. 

– Drew McDermott

g
across the 
table”
-Gary Kasparov

Agents

15

http://www.youtube.com/watch?v=WFR3lOm_xhE

Recommendations

16

Agents

17

Agents

18

Stanford Car
DARPA Grand Challenge

Berkeley Autonomous Helicopter
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What Can AI Do?

Quiz: Which of the following can be done at present?

 Play a decent game of Soccer?
 Play a winning game of Chess?  Go? Jeopardy?
 Drive safely along a curving mountain road?   University Way?

B k' th f i th W b? At QFC? Buy a week's worth of groceries on the Web?   At QFC?
 Make a car?   Make a cake? 
 Discover and prove a new mathematical theorem?
 Perform a complex surgical operation?
 Unload a dishwasher and put everything away?
 Translate Chinese into English in real time?

Brownies Anyone?

Mathematical Calculation
Pacman as an Agent

Utility Function?

Implementation?

Originally developed at UC Berkeley: 
http://www-inst.eecs.berkeley.edu/~cs188/pacman/pacman.html

PS1: Search

Goal:
• Help Pac-man find 

his way through the 
maze

Techniques:
• Search: breadth-

first, depth-first, etc.
• Heuristic Search: 

Best-first, A*, etc.

PS2: Game Playing
Goal:
• Play Pac-man!

Techniques:
• Adversarial Search: minimax, 

alpha-beta, expectimax, etc.
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PS3: Planning and Learning

Goal:
• Help Pac-man 

learn about the 
world

Techniques:
• Planning: MDPs, Value Iterations
• Learning: Reinforcement Learning

PS4: Ghostbusters
Goal:
• Help Pac-man hunt 

down the ghosts

Techniques:
• Probabilistic 

models: HMMS, 
Bayes Nets

• Inference: State 
estimation and 
particle filtering

Final Project

Your choice
(No final exam)

Advanced topics
 Partially-observable MDPs

 Supervised learning

 Natural language processing

 Mixed human/autonomous computation

Starting… Now!

 Assign 0: Python Tutorial
 Online, but not graded

 Assign 1: Search
 On the web.

 Due Thurs 10/11

 Start early and ask questions.  It’s longer than most!

Outline

 Agents that Plan Ahead

 Search Problems

Uninformed Search Methods (part re ie for some) Uninformed Search Methods (part review for some)
 Depth-First Search
 Breadth-First Search
 Uniform-Cost Search

 Heuristic Search Methods (new for all)
 Best First / Greedy Search

Agent vs. Environment

 An agent is an entity that 
perceives and acts.

 A rational agent selects 

Agent

Sensors

E
n

v

Percepts

actions that maximize its 
utility function.  

 Characteristics of the 
percepts, environment,
and action space dictate 
techniques for selecting 
rational actions.

?

Actuators

v
iro

n
m

e
n

t

Actions
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Types of Environments
 Fully observable vs. partially observable

 Single agent vs. multiagent

 Deterministic vs. stochastic

 Episodic vs. sequential

 Discrete vs. continuous

Fully observable vs. Partially observable

Can the agent observe the 
complete state of the environment?

vs.

Single agent vs. Multiagent

Is the agent the only thing acting in the 
world?

vs.

Deterministic vs. Stochastic

Is there uncertainty in how the world 
works?

vs.

Episodic vs. Sequential

Does the agent take more than one 
action?

vs.

Discrete vs. Continuous

 Is there a finite (or countable) number 
of possible environment states?

vs.
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Types of Agent

 An agent is an entity that 
perceives and acts.

 A rational agent selects 

Agent

Sensors

E
n

v

Percepts

actions that maximize its 
utility function.  

 Characteristics of the 
percepts, environment,
and action space dictate 
techniques for selecting 
rational actions.

?

Actuators

v
iro

n
m

e
n

t

Actions

Reflex Agents

 Reflex agents:
 Choose action based 

on current percept (and 
maybe memory)

 Do not consider the 
future consequences offuture consequences of 
their actions

 Act on how the world IS

 Can a reflex agent be 
rational?

 Can a non-rational 
agent achieve goals?

Famous Reflex Agents Goal Based Agents

 Plan ahead
 Ask “what if”

 Decisions based on 
(hypothesized)(hypothesized) 
consequences of actions

 Must have a model of how 
the world evolves in 
response to actions

 Act on how the world 
WOULD BE

Search thru a 

 Set of states

 Operators [and costs]

 Start state

• Input:
Problem Space / State Space Problem Space / State Space 

 Goal state [test]

• Path: start  a state satisfying goal test

• [May require shortest path]

• [Sometimes just need state passing test]

• Output:

Example: Simplified Pac-Man

 Input:
 A state space

 A successor function
“N” 1 0

 A start state 

 A goal test

 Output:

“N”, 1.0

“E”, 1.0
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Ex: Route Planning: Romania  Bucharest

 Input:
 Set of states

 Operators [and costs]

 Start state Start state

 Goal state (test)

 Output:

Example: N Queens

 Input:
 Set of states

 Operators [and costs]

Q

Q

Q

Q

 Start state

 Goal state (test)

 Output

Ex: Blocks World
 Input:
 Set of states

 Operators [and costs]

Partially specified plans

Plan modification operators

 Start state

 Goal state (test)

 Output:

p

The null plan (no actions)

A plan which provably achieves

The desired world configuration

Multiple Problem 
Spaces

Real World
States of the world (e.g. block configurations)   

Actions (take one world-state to another)

Robot’s Head
• Problem Space 1
• PS states = 

• models of world states
• Operators = 

• models of actions

Robot s Head
• Problem Space 2
• PS states = 

• partially spec. plan
• Operators = 

• plan modificat’n ops

Algebraic Simplification

 Input:
 Set of states

 Operators [and costs]

47

 Operators [and costs]

 Start state

 Goal state (test)

 Output:

State Space Graphs

 State space graph:

 Each node is a state

 The successor function 
is represented by arcs

G

d

b c

e

a

f Edges may be labeled 
with costs

 We can rarely build this 
graph in memory (so we 
don’t)

S

d

p
q

h

f

r

Ridiculously tiny search graph 
for a tiny search problem
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State Space Sizes?

 Search Problem:
Eat all of the food

 Pacman positions:
10 x 12 = 120

 Pacman facing:
up, down, left, right

 Food Count: 30

 Ghost positions: 12

Search Methods

 Blind Search

• Depth first search

• Breadth first search

• Iterative deepening search

 Local Search
 Informed Search
 Constraint Satisfaction
 Adversary Search

• Uniform cost search

Search Trees

“E”, 1.0“N”, 1.0

 A search tree:
 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 Edges are labeled with actions and costs

 For most problems, we can never actually build the whole tree

Example: Tree Search

G

b c

e

a

State Graph:

S

d

p
q

e

h

f

r

What is the search tree?

State Graphs vs. Search Trees

S

S

G

d

b

p q

c

e

h

a

f

r

Each NODE in in the 
search tree denotes an 
entire PATH in the 
problem graph.

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

We construct both 
on demand – and 
we construct as 
little as possible.

States vs. Nodes

 Nodes in state space graphs are problem states

 Represent an abstracted state of the world

 Have successors, can be goal / non-goal, have multiple predecessors

 Nodes in search trees are plans

 Represent a plan (sequence of actions) which results in the node’s state

 Have a problem state and one parent, a path length, a depth & a cost

 The same problem state may be achieved by multiple search tree nodes

Depth 5

Depth 6

Parent

Node

Search Tree Nodes
Problem States

Action
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Building Search Trees

 Search:
 Expand out possible plans
 Maintain a fringe of unexpanded plans
 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode is 
in the book!

Review: Depth First Search

G

b c

e

aStrategy: expand 
deepest node first

Implementation:

S

d

p
q

e

h

f

r

Implementation: 
Fringe is a LIFO 
queue (a stack)

Review: Depth First Search

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b

a
c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Review: Breadth First Search

G

b c

e

aStrategy: expand 
shallowest node 
first

S

d

p
q

e

h

f

r

Implementation: 
Fringe is a FIFO 
queue

Review: Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Search

Tiers
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Search Algorithm Properties

 Complete? Guaranteed to find a solution if one exists?
 Optimal? Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

V i blVariables:

n Number of states in the problem

b The maximum branching factor B
(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete Optimal Time Space

DFS Depth First 
Search

N N O(BLMAX) O(LMAX)

START

No No Infinite Infinite

 Infinite paths make DFS incomplete…
 How can we fix this?
 Check new nodes against path from S

 Infinite search spaces still a problem

GOALa

b

DFS

…
b

1 node

b nodes

b2 nodes

m tiers

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking Y if finite N O(bm) O(bm)

bm nodes

* Or graph search – next lecture.

BFS
Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

1 node

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

Memory a Limitation?

 Suppose:
• 4 GHz CPU
• 6 GB main memory
• 100 instructions / expansion

5 b t s / n d• 5 bytes / node

• 400,000 expansions / sec
• Memory filled in 300 sec   …  5 min

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?
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Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of 
length 1 or less.  

2. If “1” failed, do a DFS which only searches paths 
of length 2 or less.

3 If “2” f il d d DFS hi h l h th

…
b

3. If “2” failed, do a DFS which only searches paths 
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

ID

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y Y O(bd) O(bd)

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

68

5 1.5

10 1.2

25 1.08

100 1.02

Speed

8 Puzzle

2x2x2 Rubik’s

15 P l

105 .01 sec

106 .2 sec

BFS
Nodes   Time

Iter. Deep.
Nodes  Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

# of duplicates

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

1017 20k yrs

1020 574k yrs

1037 1023 yrs

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?

8x

1Mx

Rubik has higher branching factor
15 puzzle has greater depth

When to Use Iterative Deepening

 N Queens?
Q

Q

Q

© Daniel S. Weld 70

Q

Costs on Actions

GOAL

b c

e

a2

81

2

3

3
2

2

Notice that BFS finds the shortest path in terms of number of 
transitions.  It does not find the least-cost path.

START

d

p
q

h

f

r

9 28
3

1

4

4

15

1

Uniform Cost Search

GOAL

b c

a2 2

3
2

Expand 
cheapest 
node first:

Fringe is a 

START

d

p
q

e

h

f

r

9 2

81

8
3

1

4

4

15

1

2

2

priority 
queue
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Uniform Cost Search

Expansion order:

(S,p,d,b,e,a,r,f,e,G) S

G

d

b

p q

c

e

h

a

f

r

3
9

1

1

2

8

8 1

15

1

22

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

3 9 1

164
11

5

713

8

1011

17 11

0

6Cost 
contours

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq pop() returns the key with the lowest value and

 A priority queue is a data structure in which you can insert and 
retrieve (key, value) pairs with the following operations:

pq.pop() returns the key with the lowest value, and 
removes it from the queue.

 You can decrease a key’s priority by pushing it again

 Unlike a regular queue, insertions aren’t constant time, 

usually O(log n)

 We’ll need priority queues for cost-sensitive search methods

Uniform Cost Search
Algorithm Complete Optimal Time Space

DFS w/ Path 
Checking

BFS

UCS

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y* Y O(bC*/) O(bC*/)

…
b

C*/ tiers

Uniform Cost Issues

 Remember: explores 
increasing cost contours

 The good: UCS is 
complete and optimal!

…

c  3

c  2

c  1

complete and optimal!

 The bad:
 Explores options in every 

“direction”
 No information about goal 

location Start Goal

Uniform Cost: Pac-Man

 Cost of 1 for each action

 Explores all of the states, but one

Search Heuristics

 Any estimate of how close a state is to a goal

 Designed for a particular search problem

1010

5
11.2

 Examples: Manhattan distance, Euclidean distance
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Heuristics Best First / Greedy Search
Expand closest node first: Fringe is a priority queue

Best First / Greedy Search

 Expand the node that seems closest…

 What can go wrong?

Best First / Greedy Search

 A common case:
 Best-first takes you straight 

to the (wrong) goal

 Worst-case: like a badly-
guided DFS in the worst

…
b

guided DFS in the worst 
case
 Can explore everything
 Can get stuck in loops if no 

cycle checking

 Like DFS in completeness 
(finite states w/ cycle 
checking)

…
b

To Do:

 Look at the course website:
 http://www.cs.washington.edu/cse473/12sp

 Do the readings (Ch 3)

 Do PS0 if new to Python

 Start PS1, when it is posted

Extra Work?

 Failure to detect repeated states can cause 
exponentially more work (why?)
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Graph Search

 In BFS, for example, we shouldn’t bother 
expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

 Very simple fix: never expand a state type twice

 Can this wreck completeness?  Why or why not?

 How about optimality?  Why or why not?

Some Hints

 Graph search is almost always better than 
tree search (when not?)

 Implement your closed list as a dict or set!Implement your closed list as a dict or set!

 Nodes are conceptually paths, but better to 
represent with a state, cost, last action, and 
reference to the parent node

Best First Greedy Search

Algorithm Complete Optimal Time Space
Greedy Best-First 
Search Y* N O(bm) O(bm)

…
b

 What do we need to do to make it complete?
 Can we make it optimal?  Next class!

m

Uniform Cost Search

 What will UCS do for this graph?

b

1

0

0

 What does this mean for completeness?

START

GOAL

a

1

1

0

Best First / Greedy Search

G

b c

a2 2

2 5
h=8

h=4
h=0

 Strategy: expand the closest node to the goal

S

d

p
q

e

h

f

r

9 9

81

1
3

5
34

4

15

1

2 5
2

h=12

h=11

h=8

h=5
h=4

h=6

h=9

h=4

h=6h=11

e

[demo: greedy]
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Example: Tree Search

G

b c

a

S

d

p
q

e

h

f

r

5 Minute Break

A Dan Gillick original


