
9/28/2012

1

CSE 573: Artificial Intelligence
Autumn 2012

Introduction & Search

With slides from
Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Dan Weld

Agent vs. Environment

 An agent is an entity that
perceives and acts.

 A rational agent selects

Agent

Sensors

E
n

v

Percepts

actions that maximize its
utility function.

 Characteristics of the
percepts, environment,
and action space dictate
techniques for selecting
rational actions.

?

Actuators

v
iro

n
m

e
n

t

Actions

Goal Based Agents

 Plan ahead
 Ask “what if”

 Decisions based on
(hypothesized)(hypothesized)
consequences of actions

 Must have a model of how
the world evolves in
response to actions

 Act on how the world
WOULD BE

Search thru a

 Set of states

 Operators [and costs]

 Start state

• Input:
Problem Space / State Space Problem Space / State Space

 Goal state [test]

Path: start  a state satisfying goal test

 [May require shortest path]

 [Sometimes just need state passing test]

• Output:

Example: N Queens

 Input:
 Set of states

 Operators [and costs]

Q

Q

Q

Q

 Start state

 Goal state (test)

 Output

Machine Learning : predict fuel efficiency

Discrete Data

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america

Predict MPG
g g g g
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe

X Y

Need to find “Hypothesis”: f : X  Y

9/28/2012

2

Hypotheses: decision trees f : X  Y

• Each internal node
tests an attribute xi

• Each branch
assigns an attribute
value xi=v

Cylinders

3 4 5 6 8

good bad badMaker Horsepower• Each leaf assigns a
class y

• To classify input x?

traverse the tree
from root to leaf,
output the labeled y

g Maker Horsepower

low med highamerica asia europe

bad badgoodgood goodbad

Search thru Space of Decision Trees

8

Search Methods

 Blind Search

• Depth first search

• Breadth first search

• Iterative deepening search

 Local Search
 Informed Search
 Constraint Satisfaction
 Adversary Search

• Uniform cost search

State Space Graphs

 State space graph:

 Each node is a state

 The successor function
is represented by arcs

G

d

b c

e

a

f Edges may be labeled
with costs

 We can rarely build this
graph in memory (so we
don’t)

S

d

p
q

h

f

r

Ridiculously tiny search graph
for a tiny search problem

State Space Sizes?

 Search Problem:
Eat all of the food

 Pacman positions:
10 x 12 = 120

 Pacman facing:
up, down, left, right

 Food Count: 30

 Ghost positions: 12

Search Trees

“E”, 1.0“N”, 1.0

 A search tree:
 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 Edges are labeled with actions and costs

 For most problems, we can never actually build the whole tree

9/28/2012

3

Example: Tree Search

G

b c

e

a

State Graph:

S

d

p
q

e

h

f

r

What is the search tree?

State Graphs vs. Search Trees

S

S

G

d

b

p q

c

e

h

a

f

r

Each NODE in in the
search tree denotes an
entire PATH in the
problem graph.

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

We construct both
on demand – and
we construct as
little as possible.

States vs. Nodes

 Nodes in state space graphs are problem states

 Represent an abstracted state of the world

 Have successors, can be goal / non-goal, have multiple predecessors

 Nodes in search trees are plans

 Represent a plan (sequence of actions) which results in the node’s state

 Have a problem state and one parent, a path length, a depth & a cost

 The same problem state may be achieved by multiple search tree nodes

Depth 5

Depth 6

Parent

Node

Search Tree Nodes
Problem States

Action

Building Search Trees

 Search:
 Expand out possible plans
 Maintain a fringe of unexpanded plans
 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

Detailed pseudocode is
in the book!

Review: Depth First Search

G

b c

e

aStrategy: expand
deepest node first

Implementation:

S

d

p
q

e

h

f

r

Implementation:
Fringe is a LIFO
queue (a stack)

9/28/2012

4

Review: Depth First Search

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b

a
c

e

r

Expansion ordering:

(d,b,a,c,a,e,h,p,q,q,r,f,c,a,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Review: Breadth First Search

G

b c

e

aStrategy: expand
shallowest node
first

S

d

p
q

e

h

f

r

Implementation:
Fringe is a FIFO
queue

Review: Breadth First Search

S

G

d

b

p q

c

e

h

a

f

r

Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a
,h,r,p,q,f,p,q,f,q,c,G)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Search

Tiers

Search Algorithm Properties

 Complete? Guaranteed to find a solution if one exists?
 Optimal? Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

V i blVariables:

n Number of states in the problem

b The maximum branching factor B
(the maximum number of successors for a state)

C* Cost of least cost solution

d Depth of the shallowest solution

m Max depth of the search tree

DFS

Algorithm Complete Optimal Time Space

DFS Depth First
Search

N N O(BLMAX) O(LMAX)

START

No No Infinite Infinite

 Infinite paths make DFS incomplete…
 How can we fix this?
 Check new nodes against path from S

 Infinite search spaces still a problem

GOALa

b

DFS

…
b

1 node

b nodes

b2 nodes

m tiers

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking Y if finite N O(bm) O(bm)

bm nodes

* Or graph search – next lecture.

9/28/2012

5

BFS
Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

1 node

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

Extra Work?

 Failure to detect repeated states can cause
exponentially more work (why?)

Graph Search

 In BFS, for example, we shouldn’t bother
expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

 Very simple fix: never expand a state type twice

 Can this wreck completeness? Why or why not?

 How about optimality? Why or why not?

Some Hints

 Graph search is almost always better than
tree search (when not?)

 Implement your closed list as a dict or set!Implement your closed list as a dict or set!

 Nodes are conceptually paths, but better to
represent with a state, cost, last action, and
reference to the parent node

Memory a Limitation?

 Suppose:
• 4 GHz CPU
• 6 GB main memory
• 100 instructions / expansion

5 b t s / n d• 5 bytes / node

• 400,000 expansions / sec
• Memory filled in 300 sec … 5 min

9/28/2012

6

Comparisons

 When will BFS outperform DFS?

 When will DFS outperform BFS?

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3 If “2” f il d d DFS hi h l h th

…
b

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

ID

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y Y O(bd) O(bd)

Cost of Iterative Deepening

b ratio ID to DFS

2 3

3 2

5 1.5

33

5 1.5

10 1.2

25 1.08

100 1.02

Speed

8 Puzzle

2x2x2 Rubik’s

15 P l

105 .01 sec

106 .2 sec

BFS
Nodes Time

Iter. Deep.
Nodes Time

Assuming 10M nodes/sec & sufficient memory

105 .01 sec

106 .2 sec

of duplicates

15 Puzzle

3x3x3 Rubik’s

24 Puzzle

1017 20k yrs

1020 574k yrs

1037 1023 yrs

1013 6 days

1019 68k yrs

1025 12B yrs

Slide adapted from Richard Korf presentation

Why the difference?

8x

1Mx

Rubik has higher branching factor
15 puzzle has greater depth

When to Use Iterative Deepening

 N Queens?
Q

Q

Q

© Daniel S. Weld 35

Q

Costs on Actions

GOAL

b c

e

a2

81

2

3

3
2

2

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

START

d

p
q

h

f

r

9 28
3

1

4

4

15

1

9/28/2012

7

Uniform Cost Search

GOAL

b c

a2 2

3
2

Expand
cheapest
node first:

Fringe is a

START

d

p
q

e

h

f

r

9 2

81

8
3

1

4

4

15

1

2

2

priority
queue

Uniform Cost Search

Expansion order:

(S,p,d,b,e,a,r,f,e,G) S

G

d

b

p q

c

e

h

a

f

r

3
9

1

1

2

8

8 1

15

1

22

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

3 9 1

164
11

5

713

8

1011

17 11

0

6Cost
contours

Priority Queue Refresher

pq.push(key, value) inserts (key, value) into the queue.

pq pop() returns the key with the lowest value and

 A priority queue is a data structure in which you can insert and
retrieve (key, value) pairs with the following operations:

pq.pop() returns the key with the lowest value, and
removes it from the queue.

 You can decrease a key’s priority by pushing it again

 Unlike a regular queue, insertions aren’t constant time,

usually O(log n)

 We’ll need priority queues for cost-sensitive search methods

Uniform Cost Search
Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

UCS

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y* Y O(bC*/) O(bC*/)

…
b

C*/ tiers

Uniform Cost Issues

 Remember: explores
increasing cost contours

 The good: UCS is
complete and optimal!

…

c  3

c  2

c  1

complete and optimal!

 The bad:
 Explores options in every

“direction”
 No information about goal

location Start Goal

Uniform Cost: Pac-Man

 Cost of 1 for each action

 Explores all of the states, but one

9/28/2012

8

Exponentials Everywhere

43
“I think we’re going to need a stronger donkey…”

Heuristics

44

Search Heuristics

 Any estimate of how close a state is to a goal

 Designed for a particular search problem

1010

5
11.2

 Examples: Manhattan distance, Euclidean distance

Heuristics

Best First / Greedy Search
Expand closest node first: Fringe is a priority queue

Best First / Greedy Search

 Expand the node that seems closest…

 What can go wrong?

9/28/2012

9

Greedy Search

Expand the node that seems closest…

A

start

What can go wrong?

B

start

goal

Best First / Greedy Search

 A common case:
 Best-first takes you straight

to the (wrong) goal

 Worst-case: like a badly-
guided DFS in the worst

…
b

guided DFS in the worst
case
 Can explore everything
 Can get stuck in loops if no

cycle checking

 Like DFS in completeness
(finite states w/ cycle
checking)

…
b

Best First Greedy Search

Algorithm Complete Optimal Time Space
Greedy Best-First
Search Y* N O(bm) O(bm)

…
b

 What do we need to do to make it complete?

m

 Can we make it optimal?

A* Search
Hart, Nilsson & Rafael 1968

Best first search with f(n) = g(n) + h(n)
 g(n) = sum of costs from start to n

 h(n) = estimate of lowest cost path n  goal

h(goal) = 0(g)

If h(n) is admissible and monotonic

then A* is optimal

}

Graph Search Detail

When do we check for goals?
 When adding to queue?

 When removing from queue?

European Examplestart

54

end

9/28/2012

10

A* Example

55

A* Example

56

A* Example

57

A* Example

58

A* Example

59

A* Example

60

9/28/2012

11

Optimality of A*

61

Optimality Continued

62

A* Summary

 Pros

63

 Cons

Iterative-Deepening A*
 Like iterative-deepening depth-first, but...

 Depth bound modified to be an f-limit
 Start with f-limit = h(start)

 Prune any node if f(node) > f-limit

 Next f-limit = min-cost of any node pruned

64

a

b

c

d

e

f

FL=15

FL=21

IDA* Analysis
 Complete & Optimal (ala A*)

 Space usage  depth of solution

 Each iteration is DFS - no priority queue!

 # nodes expanded relative to A*
 Depends on # unique values of heuristic function

65

 Depends on # unique values of heuristic function

 In 8 puzzle: few values  close to # A* expands

 In traveling salesman: each f value often unique
 1+2+…+n = O(n2) where n=nodes A* expands

if n is too big for main memory, n2 is too long to wait!

 Generates duplicate nodes in cyclic graphs

Forgetfulness

 A* used exponential memory

 How much does IDA* use?
 During a run?

I b t ?

© Daniel S. Weld 66

 In between runs?

9/28/2012

12

SMA*

 Use all available memory

 Start like A*

 When memory is full…
 Erase node with highest f-value

© Daniel S. Weld 67

Erase node with highest f value

 First, backup parent with this f-value

 So… parent knows cost-bound on best child

Alternative Approach to
Finite Memory…

 Optimality is nice to have, but…

© Daniel S. Weld 68

Depth-First Branch & Bound
 Single DF search
  uses linear space

 Keep track of best solution so far

 If f(n) = g(n)+h(n)  cost(best-soln)
 Then prune n

69

Then prune n

 Requires
 Finite search tree, or

 Good upper bound on solution cost

 Generates duplicate nodes in cyclic graphs
Adapted from Richard Korf presentation

Beam Search
 Idea
 Best first but only keep N best items on

priority queue

 Evaluation

© Daniel S. Weld 70

No

O(b^d)

O(b + N)

 Complete?

 Time Complexity?

 Space Complexity?

Hill Climbing
Idea
 Always choose best child; no

backtracking

 Beam search with |queue| = 1

Problems?
• Local maxima

“Gradient ascent”

© Daniel S. Weld 71

Local maxima

• Plateaus

• Diagonal ridges

Randomizing Hill Climbing

 Randomly disobeying heuristic

 Random restarts

© Daniel S. Weld 72

(heavy tailed distributions)

 Local Search Local Search

9/28/2012

13

Simulated Annealing
 Objective: avoid local minima

 Technique:

 For the most part use hill climbing

 When no improvement possible
 Choose random neighbor

 Let  be the decrease in quality

 Move to neighbor with probability e --/T

R d “t t ” (T) ti

© Daniel S. Weld
73

 Reduce “temperature” (T) over time

 Optimal?

temp

• If T decreased slowly enough, will reach optimal state
 Widely used

• See also WalkSAT

