

Hypotheses: decision trees $f: X \rightarrow Y$

Maker

good

america

asia europe

Cylinders

5 6

bad bad

Horsepower

| good

low

- Each internal node tests an attribute x_i
- Each branch assigns an attribute value $x_i = v$
- · Each leaf assigns a class y
- To classify input x? traverse the tree from root to leaf, output the labeled y

BFS								
Algorithm		Complete Optimal Time			Space			
DFS	w/ Path Checking	Y	N	$O(b^m)$		O(bm)		
BFS		Y	Y	$O(b^d)$		$O(b^d)$		
	d tiers				1 node b nodes b ² nodes b ^d nodes b ^m nodes			

Some Hints

- Graph search is almost always better than tree search (when not?)
- Implement your closed list as a dict or set!
- Nodes are conceptually paths, but better to represent with a state, cost, last action, and reference to the parent node

Memory a Limitation? • Suppose: • 4 GHz CPU • 6 GB main memory • 100 instructions / expansion • 5 bytes / node • 400,000 expansions / sec • Memory filled in 300 sec ... 5 min

Iterative Deepening							
Iterative deepening uses DFS as a subroutine:							
1. Do a DFS which only searches for paths of length 1 or less.							
2. If "1" failed, do a DFS which only searches paths of length 2 or less.							
3. If "2" failed, do a DFS which only searches paths of length 3 or less.							
and so on.							
Algorith	m	Complete	Optimal	Time	Space		
DFS	w/ Path Checking	Y	N	$O(b^m)$	O(bm)		
BFS		Y	Y	$O(b^d)$	$O(b^d)$		
ID		Y	Y	$O(b^d)$	O(bd)		

b	ratio ID to DFS
2	3
3	2
5	1.5
10	1.2
25	1.08
100	1.02

Speed Assuming 10M nodes/sec & sufficient memory						
BFS Iter. Deep. <mark>Nodes</mark> Time <mark>Nodes</mark> Time						
8 Puzzle	10 ⁵	.01 sec		10 ⁵	.01 sec	
2x2x2 Rubik's	10 ⁶	.2 sec		10 ⁶	.2 sec	
15 Puzzle	10 ¹³	6 days 🛛 1N	١x	10 ¹⁷	20k yrs	
3x3x3 Rubik's	10 ¹⁹	68k yrs 🛚 😣	C	10 ²⁰	574k yrs	
24 Puzzle	10 ²⁵	12B yrs		10 ³⁷	10 ²³ yrs	
Why the difference? Rubik has higher branching factor 15 puzzle has greater depth Side adapted from Rehard Kor presentation						

· We'll need priority queues for cost-sensitive search methods

