
10/4/2012

1

CSE 573: Artificial Intelligence
Autumn2012

Heuristics & Pattern 
Databases for Search

With many slides from 
Dan Klein, Richard Korf, Stuart Russell,  Andrew Moore, & UW Faculty

Dan Weld

Recap: Search Problem

 States 
 configurations of the world

 Successor function: 
 function from states to lists of (state, action, cost) 

triplestriples

 Start state
 Goal test

General Graph Search Paradigm

function tree-search(root-node)
fringe  successors(root-node)
explored  empty
while ( notempty(fringe) )

{node  remove-first(fringe)
state  state(node)
if goal-test(state) return solution(node)

l d  l d { d }

3

explored explored  {node}
fringe  fringe  (successors(node) - explored)

}
return failure

end tree-search

Fringe = priority queue, ranked by heuristic
Often:  f(x) = g(x) + h(x)

Which Algorithm?

Uniform cost search

4

Which Algorithm?

A*  using Manhattan 

Which Algorithm?

Best-first search  using Manhattan 



10/4/2012

2

Heuristics
It’s what makes search actually work

Admissable Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

8© Daniel S. Weld

Where do heuristics come from?

Relaxed Problems

 Derive admissible heuristic from exact cost of 
a solution to a relaxed version of problem
 For transportation planning, relax requirement that car has 

to stay on road  Euclidean dist

 For blocks world distance = # move operations heuristic = For blocks world, distance = # move operations heuristic = 
number of misplaced blocks

 What is relaxed problem?

9

# out of place = 2,   true distance to goal = 3

• Cost of optimal soln to relaxed problem  cost of 
optimal soln for real problem

What’s being relaxed?

Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped
Goal: Pancakes in size order

Example: Pancake Problem



10/4/2012

3

Example: Pancake Problem

3
2

4

State space graph with costs as weights

2

2

4

3

3

2

2

3
4

3

4 3

Example: Heuristic Function

Heuristic: h(x) = the largest pancake that is still out of place
What is being relaxed?

4

3

0

2

3

3

3

4

4

3

4

4

4

Counterfeit Coin Problem

 Twelve coins

 One is counterfeit: maybe heavier, maybe light

 Objective: 
 Which is phony & is it heavier or lighter?Which is phony & is it heavier or lighter?

 Max three weighings

15

Coins

 State = coin possibilities

 Action = weighing two subsets of coins

 Heuristic?
 What is being relaxed?What is being relaxed?

16

Traveling Salesman Problem
What can be relaxed?

Path = 
1) Graph
2) Degree 2 (except ends, degree 1)
3) Connected

17

Kruskal’s Algo:
(Greedily add cheapest useful edges)

Traveling Salesman Problem
What can be relaxed?

Relax degree constraint
Assume can teleport to past nodes on path


Minimum spanning tree

18

Kruskal’s Algorithm:
O(n2)

(Greedily add cheapest useful edges)



10/4/2012

4

Traveling Salesman Problem
What can be relaxed?

Relax connected constraint


Cheapest degree 2 graph

19

Optimal assignment
O(n3)

Automated Generation of 
Relaxed Problems

 Need to reason about search problems

 Represent search problems in formal language

20

Planning

I have a plan - a plan that cannot possibly fail.

- Inspector Clousseau

Classical Planning
 Given 

 a logical description of the initial situation,

 a logical description of the goal conditions, and

 a logical description of a set of possible actions,

 Find 
 a sequence of actions (a plan of actions) that brings 

us from the initial situation to a situation in which the 
goal conditions hold.

© D.  Weld, D. Fox

Example: BlocksWorld

C
A

© Daniel S. Weld 23

A
C

B C
B

Planning Input: 
State Variables/Propositions

• Types: block --- a, b, c

• (on-table a) (on-table b) (on-table c)

• (clear a)  (clear b) (clear c) 

• (arm-empty) 

• (holding a) (holding b) (holding c)(holding a) (holding b) (holding c)

• (on a b) (on a c) (on b a) (on b c) (on c a) (on c b)

© D.  Weld, D. Fox 24

No. of state variables =16
No. of states = 216

No. of reachable states = ?



10/4/2012

5

Planning Input: Actions

 pickup a b,  pickup a c, …

 place a b,  place a c, …

 pickup-table a, pickup-table b, …pickup table a, pickup table b, …

 place-table a, place-table b, …

© D.  Weld, D. Fox 25

Total: 6 + 6 + 3 + 3 = 18 “ground” actions
Total: 4 action schemata

Planning Input: Actions (contd)

 :action pickup ?b1 ?b2

:precondition

(on ?b1 ?b2)

(clear ?b1)

• :action pickup-table ?b
:precondition

(on-table ?b)
(clear ?b)
(arm-empty)

(arm-empty)

:effect

(holding ?b1) 

(not (on ?b1 ?b2))

(clear ?b2)

(not (arm-empty))
© D.  Weld, D. Fox 26

(arm empty)
:effect

(holding ?b) 
(not (on-table ?b))
(not (arm-empty))

Planning Input: Initial State

• (on-table a) (on-table b) 

• (arm-empty)

A
C

B

• (clear c) (clear b)

• (on c a)

• All other propositions false 
 not mentioned  assumed false

 “Closed world assumption”

© D.  Weld, D. Fox 27

Planning Input: Goal

• (on-table c) AND (on b c) AND (on a b) 

C
B
A

D

• Is this a state?

• In planning a goal is a set of states
• Like the goal test in problem solving search

• But specified declaratively (in logic) rather than with code

© D.  Weld, D. Fox 28

Specifying a Planning Problem

 Description of initial state of world
 Set of propositions

 Description of goal:
 E.g., Logical conjunction 

 Any world satisfying conjunction is a goal

 Description of available actions

© D.  Weld, D. Fox 29

Forward State-Space Search

 Initial state: set of positive ground literals 
 CWA: literals not appearing are false

 Actions:
 applicable if preconditions satisfied

 add positive effect literals

 remove negative effect literals

 Goal test: does state logically satisfy goal?

 Step cost: typically 1

© D.  Weld, D. Fox 30



10/4/2012

6

Heuristics for State-Space Search
• Count number of false goal propositions in current 

state
Admissible?

NO

• Subgoal independence assumption:• Subgoal independence assumption:
– Cost of solving conjunction is sum of cost of solving each 

subgoal independently
– Optimistic: ignores negative interactions
– Pessimistic: ignores redundancy

– Admissible? No
– Can you make this admissible?

© D.  Weld, D. Fox 31

Heuristics for State Space Search 
(contd)

 Delete all preconditions from actions, solve 
easy relaxed problem, use length

Admissible?

YES

CSE 573

32

• :action pickup-table ?b
:precondition (and (on-table ?b)

(clear ?b)
(arm-empty))

:effect (and (holding ?b) 
(not (on-table ?b))
(not (arm-empty)))

Heuristics for eight puzzle
7 2   3

8   3

5   1    6
1   2     3

7   8

4   5    6

start goal



What can we relax?

33

Importance of Heuristics
h1 = number of tiles in wrong place

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7    2     3

8    5

4    1     6

34

6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Importance of Heuristics
h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18

7    2     3

8    5

4    1     6

35

6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

Combining Admissible 
Heuristics

 Can always take max

 Could add several heuristic valuesCould add several heuristic values
 Doesn’t preserve admissibility in general

36



10/4/2012

7

Performance of IDA* on 15 
Puzzle

 Random 15 puzzle instances were first solved 
optimally using IDA* with Manhattan distance 
heuristic (Korf, 1985).

 Optimal solution lengths average 53 moves.p g g

 400 million nodes generated on average.

 Average solution time is about 50 seconds on 
current machines.

Limitation of Manhattan 
Distance

 Solving a 24-Puzzle instance, 
 IDA* with Manhattan distance …

 65,000 years on average.

 Assumes that each tile moves independently

 In fact, tiles interfere with each other.

 Accounting for these interactions is the key to 
more accurate heuristic functions.

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33 1

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves



10/4/2012

8

Example: Linear Conflict

1 33
11

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves

Example: Linear Conflict

1 331

Manhattan distance is 2+2=4 moves, but linear conflict adds 2 
additional moves.

Linear Conflict Heuristic

 Hansson, Mayer, and Yung, 1991

 Given two tiles in their goal row, 
 but reversed in position, 

 additional vertical moves can be added to 
Manhattan distance.

 Still not accurate enough to solve 24-Puzzle

 We can generalize this idea further. 

Pattern Database Heuristics

 Culberson and Schaeffer, 1996

 A pattern database is a complete set of such 
positions, with associated number of moves.

 e.g. a 7-tile pattern database for the Fifteene.g. a 7 tile pattern database for the Fifteen 
Puzzle contains 519 million entries. 

Heuristics from Pattern Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

31 moves is a lower bound on the total number of moves needed to solve 
this particular state.



10/4/2012

9

Precomputing Pattern 
Databases

 Entire database is computed with one 
backward breadth-first search from goal.

 All non-pattern tiles are indistinguishable, 
 But all tile moves are counted.

 The first time each state is encountered, the 
total number of moves made so far is stored.

 Once computed, the same table is used for all 
problems with the same goal state.

Combining Multiple Databases

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is maximum of 31 moves

31 moves needed to solve red tiles

22 moves need to solve blue tiles

Drawbacks of Standard Pattern DBs

 Since we can only take max
 Diminishing returns on additional DBs

 Would like to be able to add valuesWould like to be able to add values

51
© Daniel S. Weld Adapted from Richard Korf presentation

Additive Pattern Databases

 Culberson and Schaeffer counted all moves 
needed to correctly position the pattern tiles.
 In contrast, we could count only moves of the 

pattern tiles, ignoring non-pattern moves. 

 If no tile belongs to more than one pattern,  then 
we can add their heuristic values.

 Manhattan distance is a special case of this, 
where each pattern contains a single tile.

Example Additive Databases

1 2 3

4 5 6 74 5 6 7

8 9 10 11

12 13 15 14
The 7-tile database contains 58 million entries.

The 8-tile database contains 519 million entries.

Computing the Heuristic

1 2 3

4 5 6 7

5 10 14 7

8 3 6 1

8 9 10 11

12 13 14 15

15 12 9

2 11 4 13

Overall heuristic is sum, or 20+25=45 moves

20 moves needed to solve red tiles

25 moves needed to solve blue tiles



10/4/2012

10

Performance

 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 15 

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan 
 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown
 Each DB has 128 million entries

 Without PDBs: 65,000 years

55
© Daniel S. Weld Adapted from Richard Korf presentation


