Markov Decision Processes

Chapter 17

Mausam

Objective of an MDP

- Find a policy $\pi: \mathrm{v} \rightarrow \mathrm{D}$
- which optimizes
- minimizes (discounted) expected cost to reach a goal
- maximizes or expected reward
- maximizes (undiscount.) expected (reward-cost)
- given a \qquad horizon
- finite
- infinite
- indefinite
- assuming full observability

Examples of MDPs

- Goal-directed, Indefinite Horizon, Cost Minimization MDP
- <V, D, Sr, F, J, s ${ }_{0}>$
- Most often studied in planning, graph theory communities

Infinite Horizon, Discounted Reward Maximization MDP

- <V, D, Sr, U, $\gamma>$ most popular
- Most often studied in machine learning, economics, operations research communities
- Oversubscription Planning: Non absorbing goals, Reward Max. MDP
- <V, D, sr, J, U, $\mathrm{s}_{0}>$
- Relatively recent model

Bellman Equations for MDP $_{1}$

- <V, D , Sr, F, J, So>
- Define $J^{*}(\mathrm{~s})$ \{optimal cost\} as the minimum expected cost to reach a goal from this state.
- J* should satisfy the following equation:

$$
\begin{aligned}
& J^{*}(s)=0 \text { if } s \in \mathcal{G} \\
& J^{*}(s)=
\end{aligned}
$$

Bellman Equations for $\mathbf{M D P}_{2}$

- <V, D, Sr, U , $\mathrm{S}_{0}, \gamma>$
- Define $\mathrm{V}^{*}(\mathrm{~s})$ \{optimal value\} as the maximum expected discounted reward from this state.
- V^{*} should satisfy the following equation:

$$
V^{*}(s)=\max _{a \in A p(s)} \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P} r\left(s^{\prime} \mid s, a\right)\left[\mathcal{R}\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
$$

