CSE 573: Artificial Intelligence Autumn 2012

Bayesian Networks

Dan Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Outline

- Probabilistic models (and inference)
 - Bayesian Networks (BNs)
 - Independence in BNs
 - Efficient Inference in BNs
 - Learning
- Whirlwind, so...
 - Take CSE 515 (Statistical Methods)
 - Ben Taskar, Spring 2013

 $P(X|A_1\ldots A_n)$

Example: Traffic II

- Let's build a graphical model
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

- One answer: fully connect the graph
- Better answer: don't make any false
- conditional independence assumptions

Summary

- Bayes nets compactly encode joint distributions (JDs) • Other graphical models too: factor graphs, CRFs, ...
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's JD may have further (conditional) independence known only from specific CPTs

Outline Probabilistic models (and inference) Bayesian Networks (BNs) Independence in BNs Efficient Inference in BNs Learning

Burglary

MaryCalls

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:
 - 1. Pick a variable X
 - Calculate Pr(X=true | all other variables)
 Set X to true with that probability
- Repeat many times. Frequency with which any variable
 Y is true = its posterior probability.

98

- Converges to true posterior when frequencies stop changing significantly
 - stable distribution, mixing

Outline

Probabilistic models

- Bayesian Networks (BNs)
- Independence in BNs
- Efficient Inference in BNs
- Learning