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CSE 573: Artificial Intelligence
Autumn 2012

B i N t kBayesian Networks

Dan Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew 
Moore & Luke Zettlemoyer
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Outline

 Probabilistic models (and inference)
 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning

 Whirlwind, so…
 Take CSE 515 (Statistical Methods)

 Ben Taskar, Spring 2013 

Bayes’ Nets: Big Picture

 Two problems with using full joint distribution tables as 
our probabilistic models:
 Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
 Hard to learn (estimate) anything empirically about more than a 

few variables at a timefew variables at a time

 Bayes’ nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
 Aka graphical model
 We describe how variables locally interact
 Local interactions chain together to give global, indirect 

interactions

Bayes’ Net Semantics

Formally:

 A set of nodes, one per random variable

 Directed edges, forming an acyclic graph

A1 An

 A CPT for each node
 CPT = “Conditional Probability Table”
 Collection of distributions over X, one for each 

combination of parents’ values

X

A Bayes Net = Topology (graph) + Local Conditional Probabilities

Hidden Markov Models X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:

Example Bayes’ Net: Car
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Example: Car Insurance

7© D. Weld and D. Fox

Probabilities in BNs

 Bayes’ nets implicitly encode joint distributions
 As a product of local conditional distributions

 To see what probability a BN gives to a full assignment, multiply 
all the relevant conditionals together:

 Does this always work?  Why?

 Not every BN can represent every joint distribution
 The topology enforces certain independence assumptions

 Compare to the exact decomposition according to the chain rule!

Example: Independent Coin Flips

X1 X2 Xn

 N independent coin flips

h 0.5 h 0.5 h 0.5

 No interactions between variables

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

2n - 1

Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

 What about fire, smoke, alarm?

Example: Alarm Network

 Variables
 B: Burglary

 A: Alarm goes off

 M: Mary calls M: Mary calls

 J: John calls

 E: Earthquake!

 How big is joint distribution?
 2n-1 = 31 parameters

Example: Alarm Network

Burglary Earthqk

Alarm

J h

B P(B)

+b 0.001

¬b 0.999

E P(E)

+e 0.002

¬e 0.998

B E A P(A|B,E)

+b +e +a 0 95

Only 10 params

John 
calls

Mary 
calls

+b +e +a 0.95

+b +e ¬a 0.05

+b ¬e +a 0.94

+b ¬e ¬a 0.06

¬b +e +a 0.29

¬b +e ¬a 0.71

¬b ¬e +a 0.001

¬b ¬e ¬a 0.999

A J P(J|A)

+a +j 0.9

+a ¬j 0.1

¬a +j 0.05

¬a ¬j 0.95

A M P(M|A)

+a +m 0.7

+a ¬m 0.3

¬a +m 0.01

¬a ¬m 0.99
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Example: Traffic II

 Let’s build a graphical model

 Variables
 T: Traffic
 R: It rains
 L: Low pressure
 D: Roof drips
 B: Ballgame
 C: Cavity

Changing Bayes’ Net Structure

 The same joint distribution can be 
encoded in many different Bayes’ nets

A l i ti i d Analysis question: given some edges, 
what other edges do you need to add?
 One answer: fully connect the graph

 Better answer: don’t make any false 
conditional independence assumptions

Example: Independence

 For this graph, you can fiddle with  (the CPTs) all you 
want, but you won’t be able to represent any distribution 
in which the flips are dependent!

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2

All distributions

Example: Coins

 Extra arcs don’t prevent representing 
independence, just allow non-independence

X1 X2 X1 X2

h 0.5

t 0.5

1 2 1 2

h 0.5

t 0.5
h | h 0.5

t | h 0.5

h | t 0.5

t | t 0.5

 Adding unneeded arcs isn’t 
wrong, it’s just inefficient

h 0.5

t 0.5

Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be encoded

 The graph structure 
guarantees certain 

X

Y

Z

X

Y

Z

(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution X

Y

Z

Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

X Y Z

 Question: are X and Z independent?
 Answer: no.  

 Example: low pressure causes rain, which causes traffic.
 Knowledge about X may change belief in Z, 
 Knowledge about Z may change belief in X (via Y)
 Addendum: they could be independent: how?
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Causal Chains

 This configuration is a “causal chain”
X: Low pressure

Y: Rain

Z: Traffic

X Y Z

 Is X independent of Z given Y?

Yes!

Evidence along the chain “blocks” the influence

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

X

Y

Z

Y: Project due

X: Forum busy

Z: Lab full

Common Parent

 Another basic configuration: two 
effects of the same parent
 Are X and Z independent?

 Are X and Z independent given Y?
X

Y

Z
 Are X and Z independent given Y?

Yes!

Y: Project due

X: Forum busy

Z: Lab full

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

traffic, but they are not correlated

 Still need to prove they must be (try it!)

Common Effect

 Last configuration: two causes of 
one effect (v-structures)
 Are X and Z independent? X Z
 Yes: the ballgame and the rain cause 

traffic but they are not correlated
Y

X: Raining

Z: Ballgame

Y: Traffic

 No: seeing traffic puts the rain and the 
ballgame in competition as explanation!

 This is backwards from the other cases
 Observing an effect activates influence 

between possible causes.

traffic, but they are not correlated

 Still need to prove they must be (try it!)

 Are X and Z independent given Y?

The General Case

 Any complex example can be analyzed 
using these three canonical cases

G l ti i i BN t General question: in a given BN, are two 
variables independent (given evidence)?

 Solution: analyze the graph
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Reachability (D-Separation)
 Question: Are X and Y 

conditionally independent 
given evidence vars {Z}?
 Yes, if X and Y “separated” by Z
 Look for active paths from X to Y
 No active paths = independence!

 A path is active if each triple

Active Triples Inactive Triples

 A path is active if each triple 
is active:
 Causal chain A  B  C where B 

is unobserved (either direction)
 Common cause A  B  C 

where B is unobserved
 Common effect (aka v-structure)

A  B  C where B or one of its 
descendents is observed

 All it takes to block a path is 
a single inactive segment

Example: Independent?

Yes R B

Active Segments

No

T

T’

No

No

Example: Independent?

R B

L

Yes

Yes

Active Segments

TD

T’

Yes

No

No

Example

 Variables:
 R: Raining

 T: Traffic

 D: Roof drips

R

Active Segments

 D: Roof drips

 S: I’m sad

 Questions:

T

S

D

Yes

No

No

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 43

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 44

MB(X) = Par(X)  Childs(X)  Par(Childs(X))



11/7/2012

6

Summary

 Bayes nets compactly encode joint distributions (JDs)
 Other graphical models too: factor graphs, CRFs, …

 Guaranteed independencies of distributions can be 
deduced from BN graph structure

 D-separation gives precise conditional independence 
guarantees from graph alone

 A Bayes’ net’s JD may have further (conditional) 
independence known only from specific CPTs

Outline

 Probabilistic models (and inference)
 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning

Inference in BNs
This graphical independence representation yields efficient 

inference schemes

We generally want to compute 

Marginal probability: Pr(Z)Marginal probability: Pr(Z),

Pr(Z|E) where E is (conjunctive) evidence

 Z: query variable(s), 

 E: evidence variable(s)

 everything else: hidden variable

Computations organized by network topology
© D. Weld and D. Fox 54

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) =   P(b,j,m,e,a)
e,a

P(B | J=true, M=true)

Earthquake Burglary

AlarmAlarm

MaryCallsJohnCalls

P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m|a)
e a

Variable Elimination
P(b|j,m) = P(b) P(e) P(a|b,e)P(j|a)P(m,a)

e        a

Repeated computations  Dynamic Programming
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Reducing 3-SAT to Bayes Nets

Approximate Inference in Bayes Nets
Sampling based methods

(Based on slides by Jack Breese 
and Daphne Koller)

67

Bayes Net is a generative model
 We can easily generate samples from the 

distribution represented by the Bayes net
 Generate one variable at a time in topological order

Use the samples to compute probabilities, say P(c) or P(n|c)

P(B|C) 

69

P(B|C) 

70

P(B|C) 

71



11/7/2012

8

P(B|C) 

72

P(B|C) 

73

P(B|C) 

74

P(B|C) 

75

P(B|C) 

76

P(B|C) 

77
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P(B|C) 

78

P(B|C) 

79

P(B|C) 

80

P(B|C) 

81

P(B|C) 

82

P(B|C) 

83
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P(B|C) 

84

Rejection Sampling

 Sample from the prior
 reject if do not match the evidence

R t i t t t i ti t Returns consistent posterior estimates

 Hopelessly expensive if P(e) is small
 P(e) drops exponentially with num of evidence vars

85

Likelihood Weighting

 Idea: 
 fix evidence variables

 sample only non-evidence variables

 weight each sample by the likelihood of weight each sample by the likelihood of 
evidence

86

P(B|C) 

87

P(B|C) 

88

P(B|C) 

89
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P(B|C) 

90

P(B|C) 

91

P(B|C) 

92

P(B|C) 

93

P(B|C) 

94

P(B|C) 

95
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P(B|C) 
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Likelihood Weighting
 Sampling probability: S(z,e) =  
 Neither prior nor posterior

 Wt for a sample <z,e>:

 Weighted Sampling probability S(z,e)w(z,e)


i

))Parents(Z|P(z ii


i

ii )Parents(E|P(e  e) w(z,

=

= P(z,e)

 returns consistent estimates

performance degrades w/ many evidence vars
 a few samples get majority of the weight

 late occurring evidence vars don’t guide sample generation 


i

ii )Parents(E|P(e
i

))Parents(Z|P(z ii

97

MCMC with Gibbs Sampling
 Fix the values of observed variables

 Set the values of all non-observed variables randomly

 Perform a random walk through the space of complete 
variable assignments.  On each move:

1. Pick a variable X

98

1. Pick a variable X

2. Calculate Pr(X=true | all other variables)

3. Set X to true with that probability

 Repeat many times.  Frequency with which any variable 
Y is true = its posterior probability.

 Converges to true posterior when frequencies stop 
changing significantly

 stable distribution, mixing

Given Markov Blanket, X is 
Independent of All Other Nodes

© D. Weld and D. Fox 99

MB(X) = Par(X)  Childs(X)  Par(Childs(X))

Markov Blanket Sampling
 How to calculate Pr(X=true | all other variables) ?

 Recall: a variable is independent of all others given it’s Markov 
Blanket

 parents

 children

th t f hild

100
( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

 other parents of children

 So problem becomes calculating Pr(X=true | MB(X))
 Fortunately, it is easy to solve exactly

Example

( )

( ) ( | ( )) ( | ( ))
Y Children X

P X P X Parents X P Y Parents Y


 

( , , , )
( | , , )

( , , )

P X A B C
P X A B C

P A B C


A

101

( )

( , , )

( ) ( )
( | ) ( | , )

( , , )

( | )

( | ) ( ) ( | , )

( | , )

P A B

P A P X A P C P B

C

P A P C
P X A P B X C

P A B C

P X

X

A P B X C

C





 
  
 



X

B

C
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Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

102

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: h, b
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: h, g

 Sample H using P(H|s,g,b)
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

  Suppose result is ~h
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

107

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1
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Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g

Sample G using P(G|s,~h,b)109

Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Example

Smoking

Heart Lung

P(h)

s 0.6

P(g)

s 0.8

~s 0.1

P(s)

0.2

 Evidence: s, b

 Randomly set: ~h, g

 Sample H using P(H|s,g,b)

Suppose result is ~h

Sample G using P(G|s,~h,b)

Suppose result is g

Sample G using P(G|s,~h,b)

Suppose result is ~g
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Heart
disease

Lung
disease

Shortness
of breath

~s 0.1

H G P(b)

h g 0.9

h ~g 0.8

~h g 0.7

~h ~g 0.1

Gibbs MCMC Summary

 Advantages:

 No samples are discarded

N bl ith l f l i ht

P(X|E) =
number of samples with X=x 

total number of samples

 No problem with samples of low weight 

 Can be implemented very efficiently
 10K samples @ second

 Disadvantages:

 Can get stuck if relationship between vars is deterministic

 Many variations devised to make MCMC more robust
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Other inference methods

 Exact inference
 Junction tree

 Approximate inference Approximate inference
 Belief Propagation

 Variational Methods
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Outline

 Probabilistic models 
 Bayesian Networks (BNs)

 Independence in BNs

 Efficient Inference in BNs

 Learning


