CSE 573: Artificial Intelligence Autumn 2012

Bayesian Networks

Dan Weld

Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore \& Luke Zettlemoyer

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- Aka graphical model
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Bayes' Net Semantics
Formally:

- A set of nodes, one per random variable
- Directed edges, forming an acyclic graph
- A CPT for each node
- CPT = "Conditional Probability Table"
- Collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- An HMM is defined by:
- Initial distribution: $P\left(X_{1}\right)$
- Transitions: $\quad \boldsymbol{P}\left(\boldsymbol{X}_{\mathbf{t}} \mid \boldsymbol{X}_{\mathbf{\varepsilon}-\mathrm{L}}\right)$
- Emissions: $\quad P(E \mid X)$

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!
- How big is joint distribution?
- $2^{\mathrm{n}}-1=31$ parameters

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Does this always work? Why?
- Not every BN can represent every joint distribution
- The topology enforces certain independence assumptions
- Compare to the exact decomposition according to the chain rule!

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$
\begin{array}{ll}
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) & X \Perp Y \mid Z \\
\forall x, y, z: P(x \mid z, y)=P(x \mid z) &
\end{array}
$$

- What about fire, smoke, alarm?

Example: Traffic II

- Let's build a graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution(1)

Example: Coins

- Extra arcs don't prevent representing independence, just allow non-independence

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z independent?
- Answer: no.
- Example: low pressure causes rain, which causes traffic.
- Knowledge about X may change belief in Z ,
- Knowledge about Z may change belief in X (via Y)
- Addendum: they could be independent: how?

Causal Chains

- This configuration is a "causal chain"

- Is X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

Evidence along the chain "blocks" the influence

Common Parent

- Another basic configuration: two effects of the same parent
- Are X and Z independent?

Y: Project due
X: Forum busy Z: Lab full

Common Parent

- Another basic configuration: two effects of the same parent

- Are X and Z independent given Y ?

$$
\begin{array}{rlrl}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \quad \begin{array}{l}
\text { Y: Project due } \\
\text { X: Forum busy } \\
\text { Z: Lab full }
\end{array} \\
& =P(z \mid y) \quad \text { Yes! } &
\end{array}
$$

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)

X : Raining
Z: Ballgame
Y: Traffic

Common Effect

- Last configuration: two causes of one effect (v-structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)
- Are X and Z independent given Y ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation!

X: Raining
Z: Ballgame
- This is backwards from the other cases
- Observing an effect activates influence between possible causes.

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

Reachability (D-Separation)		
	$\begin{aligned} & \text { Aative Tipes } \\ & \mathrm{O} \rightarrow \mathrm{O} \rightarrow \mathrm{O} \end{aligned}$	${ }^{\text {Inactive Tipes }}$
		$0 \rightarrow 0 \rightarrow 0$
comile	Oo	-
Singe inative segment		

Given Markov Blanket, X is Independent of All Other Nodes

$\operatorname{MB}(X)=\operatorname{Par}(X) \cup \underset{\sim}{\operatorname{Childs}(X)} \cup \operatorname{Par}(\operatorname{Childs}(X))$

Summary

- Bayes nets compactly encode joint distributions (JDs)
- Other graphical models too: factor graphs, CRFs, ...
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's JD may have further (conditional) independence known only from specific CPTs

Inference in BNs

This graphical independence representation yields efficient inference schemes
-We generally want to compute

- Marginal probability: $\operatorname{Pr}(Z)$,
- $\operatorname{Pr}(Z \mid E)$ where E is (conjunctive) evidence
- Z: query variable(s),
- E: evidence variable(s)
- everything else: hidden variable
-Computations organized by network topology
©D. Well and D . Fox 54
P(B|J=true, M=true)

$\mathrm{P}(\mathrm{b} \mid \mathrm{j}, \mathrm{m})=\alpha \mathrm{P}(\mathrm{b}) \sum_{\mathrm{e}} \mathrm{P}(\mathrm{e})^{\sum_{\mathrm{a}}} \mathrm{P}(\mathrm{a} \mid \mathrm{b}, \mathrm{e}) \mathrm{P}(\mathrm{j} \mid \mathrm{a}) \mathrm{P}(\mathrm{m} \mid \mathrm{a})$

Outline

- Probabilistic models (and inference)
- Bavesian Networks (BNs)
- Independence in BNs
- Efficient Inference in BNs
- Learning

Likelihood Weighting

- Idea:
- fix evidence variables
- sample only non-evidence variables
- weight each sample by the likelihood of evidence

Likelihood weighting $\mathrm{P}(\mathrm{B} \mid \mathrm{C})$

Rejection Sampling

- Sample from the prior
- reject if do not match the evidence
- Returns consistent posterior estimates

Hopelessly expensive if $P(e)$ is small

- $\mathrm{P}(\mathrm{e})$ drops exponentially with num of evidence vars

Likelihood weighting $\mathrm{P}(\mathrm{B} \mid \mathrm{C})$

MCMC with Gibbs Sampling

- Fix the values of observed variables
- Set the values of all non-observed variables randomly
- Perform a random walk through the space of complete variable assignments. On each move:

1. Pick a variable X
2. Calculate $\operatorname{Pr}(X=$ true \mid all other variables $)$
3. Set X to true with that probability

- Repeat many times. Frequency with which any variable Y is true $=$ its posterior probability.
- Converges to true posterior when frequencies stop changing significantly
- stable distribution, mixing

Likelihood Weighting

- Sampling probability: $\mathrm{S}(\mathrm{z}, \mathrm{e})=\prod \mathrm{P}\left(\mathrm{z}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{Z}_{\mathrm{i}}\right)\right)$
- Neither prior nor posterior
- Wt for a sample <z,e>: $w(z, e)=\prod_{i} P\left(e_{i} \mid \operatorname{Parents}\left(\mathrm{E}_{\mathrm{i}}\right)\right.$
- Weighted Sampling probability $\mathrm{S}(\mathrm{z}, \mathrm{e}) \mathrm{w}(\mathrm{z}, \mathrm{e})$

$$
\begin{aligned}
& =\prod_{i} \mathrm{P}\left(\mathrm{z}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{Z}_{\mathrm{i}}\right)\right) \prod_{\mathrm{i}} \mathrm{P}\left(\mathrm{e}_{\mathrm{i}} \mid \operatorname{Parents}\left(\mathrm{E}_{\mathrm{i}}\right)\right. \\
& =\mathrm{P}(\mathrm{z}, \mathrm{e})
\end{aligned}
$$

\rightarrow returns consistent estimates
performance degrades w/ many evidence vars

- a few samples get majority of the weight
- late occurring evidence vars don't guide sample generation

Markov Blanket Sampling

- How to calculate $\operatorname{Pr}(\mathrm{X}=$ true | all other variables) ?

Recall: a variable is independent of all others given it's Markov Blanket

- parents
- children
- other parents of children

So problem becomes calculating $\operatorname{Pr}(X=\operatorname{true} \mid M B(X))$

- Fortunately, it is easy to solve exactly

$$
P(X)=\alpha P(X \mid \operatorname{Parents}(X)) \prod_{Y \in \text { Children }(X)} P(Y \mid \operatorname{Parents}(Y))
$$

Example

$$
P(X)=\alpha P(X \mid \operatorname{Parents}(X)) \prod_{Y \in C h i l d r e n(X)} P(Y \mid \operatorname{Parents}(Y))
$$

$$
\begin{aligned}
& P(X \mid A, B, C)=\frac{P(X, A, B, C)}{P(A, B, C)} \\
& =\frac{P(A) P(X \mid A) P(C) P(B \mid X, C)}{P(A, B, C)} \\
& =\left[\frac{P(A) P(C)}{P(A, B, C)}\right] P(X \mid A) P(B \mid X, C) \\
& =\alpha P(X \mid A) P(B \mid X, C)
\end{aligned}
$$

Other inference methods

- Exact inference
- Junction tree
- Approximate inference
- Belief Propagation
- Variational Methods

Gibbs MCMC Summary

$$
P(X \mid E)=\frac{\text { number of samples with } X=x}{\text { total number of samples }}
$$

- Advantages:
- No samples are discarded
- No problem with samples of low weight
- Can be implemented very efficiently - 10K samples @ second
- Disadvantages:
- Can get stuck if relationship between vars is deterministic
- Many variations devised to make MCMC more robust

Outline

- Probabilistic models
- Bayesian Networks (BNs)
- Independence in BNS
- Efficient Inference in BNs
- Learning

