

What is Machine Learning ?

Machine Learning

Study of algorithms that

- improve their performance
- at some task
- with experience

Supremacy of Machine Learning

- Machine learning is preferred approach to
- Speech recognition, Natural language processing
- Web search - result ranking
- Computer vision
- Medical outcomes analysis
- Robot control
- Computational biology
- Sensor networks

This trend is accelerating

- Improved machine learning algorithms
- Improved data capture, networking, faster computers
- Software too complex to write by hand
- New sensors / IO devices
- Demand for self-customization to user, environment

Space of ML Problems

Type of Supervision

ふे	(eg, Experience, Feedback)			
		Labeled Examples	Reward	Nothing
$\begin{aligned} & \text { D. } \\ & \frac{0}{\Xi} \end{aligned}$	Discrete Function	Classification		Clustering
$\stackrel{\rightharpoonup}{6}$	Continuous Function	Regression		
$\begin{aligned} & \text { Non } \\ & \text { त्र } \end{aligned}$	Policy	Apprenticeship Learning	Reinforcement Learning	
				10

Regression

predicting a numeric value
©2009 Carlos
20

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- Simply memorizing training examples is a consistent hypothesis that does not generalize.

	In Summary			
	Type of Supervision (eg, Experience, Feedback)			
		Labeled Examples	Reward	Nothing
-	Discrete	Classification		Clustering
$\stackrel{\square}{\square}$	Continuous	Regression		
-	Policy	Apprenticeship Learning	Reinforcement Learning	
				28

A Learning Problem

Hypothesis Spaces

pat reatures. we cant ngure out winch one is correct untul we ve seen every possiole
input-output pair. After 7 examples, we still have 2^{9} possibilities.

x_{1}	x_{2}	x_{3}	x_{1}	y
0	0	0	0	
0	0	0	1	$?$
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	$?$
1	0	0	0	$?$
1	0	0	1	$?$
1	0	1	0	$?$
1	0	1	1	$?$
1	1	0	0	0
1	1	0	1	$?$
1	1	1	0	$?$
1	1	1	1	$?$

Frobnitz

Some Typical Biases

- Occam's razor
"It is needless to do more when less will suffice"
- William of Occam,
died 1349 of the Black plague
- MDL - Minimum description length
- Concepts can be approximated by
- ... conjunctions of predicates
... by linear functions
... by short decision trees

37

Why is Learning Possible?

Experience alone never justifies any conclusion about any unseen instance.

Learning occurs when
PREJUDICE meets DATA!

| Learning a "Frobnitz" |
| :---: | :---: |
| 34 |

Bias

- The nice word for prejudice is "bias".
- Different from "Bias" in statistics
-What kind of hypotheses will you consider?
- What is allowable range of functions you use wher approximating?
-What kind of hypotheses do you prefer?
\qquad

ML = Function Approximation

May not be any perfect fit
Classification \sim discrete functions
$\mathrm{h}(\mathrm{x})=$ contains(`nigeria', x)

Learning as Optimization

- Preference Bias
- Loss Function
- Minimize loss over training data (test data)
- Loss(h,data) = error(h, data) + complexity(h)
- Error + regularization
- Methods
- Closed form
- Greedy search
- Gradient ascent

Regularization

Bias / Variance Tradeoff

- Variance: E[(h(x*) - h(x*) ${ }^{2}$]

How much $\mathrm{h}\left(\mathrm{x}^{\star}\right)$ varies between training sets Reducing variance risks underfitting

- Bias: [h($\left.\left.\mathrm{x}^{*}\right)-\mathrm{f}\left(\mathrm{x}^{*}\right)\right]$

Describes the average error of $h\left(x^{*}\right)$
Reducing bias risks overfitting

Regularization $E_{\text {RMS }} \quad v \sin \lambda$

Bia / Variance Tradeoff

- Variance: E[(h(x*) - $\underline{\left.\left.h\left(x^{*}\right)\right)^{2}\right]}$

How much $h\left(x^{\star}\right)$ varies between training sets Reducing variance risks underfitting

- Bias: $\left[h\left(x^{*}\right)-f\left(x^{*}\right)\right]$

Describes the average error of $h\left(x^{*}\right)$
Reducing bias risks overfitting

Overfitting

Hypothesis H is overfit when $\exists \mathrm{H}$ ' and

- H has smaller error on training examples, but
- H has bigger error on test examples

Regularization $E_{\text {RMS }} \quad v \operatorname{Sn} \lambda$

Overfitting

- Hypothesis H is overfit when $\exists \mathrm{H}$ ' and
- H has smaller error on training examples, but
- H has bigger error on test examples
- Causes of overfitting
- Training set is too small
- Large number of features
- Big problem in machine learning
- Solutions: bias, regularization
- Validation set

Learning Bayes Nets

- Learning Parameters for a Bayesian Network
- Fully observable
- Maximum Likelihood (ML)
- Maximum A Posteriori (MAP)
- Bayesian
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

Experiment 2: Tails

Now, Which coin did I use?

Experiment 2: Tails		
Now, Which coin did I use?		
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=$?	$\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=$?	$\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=$?
$P\left(C_{1} \mid H T\right)=\alpha P\left(H T \mid C_{1}\right) P\left(C_{1}\right)=\alpha P\left(H \mid C_{1}\right) P\left(T \mid C_{1}\right) P\left(C_{1}\right)$		
$\stackrel{C_{1}}{(1)}$	C_{2} B B	$\begin{aligned} & \mathrm{C}_{3} \\ & 8 \\ & 9 \end{aligned}$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$
$P\left(C_{1}\right)=1 / 3$	$P\left(C_{2}\right)=1 / 3$	$\mathrm{P}\left(\mathrm{C}_{3}\right)=1 / 3$

Experiment 1: Heads

Which coin did I use?

Terminology

-Prior:

- Probability of a hypothesis before we see any data -Uniform Prior:
- A prior that makes all hypothesis equally likely
-Posterior:
- Probability of a hypothesis after we saw some data
-Likelihood:
- Probability of data given hypothesis

Your Estimate?

Using Prior Knowledge

- Should we always use a Uniform Prior ?
- Background knowledge:

Heads => we have to buy Dan chocolate Dan likes chocolate...
=> Dan is more likely to use a coin biased in his favor

Experiment 1: Heads

Which coin did I use?

$$
\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{H}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{H}\right)=? \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{H}\right)=?
$$

$P\left(C_{\mathrm{i}} \mid H\right)=\boldsymbol{a} P\left(H \mid C_{1}\right) P\left(C_{1}\right)$

A Better Estimate		
Recall: $\boldsymbol{P}(\boldsymbol{H})=\sum_{i=1}^{\mathbf{2}} \boldsymbol{P}\left(\boldsymbol{I} \mid \boldsymbol{C}_{\mathrm{i}}\right) \boldsymbol{P}(\boldsymbol{C})=0.680$		
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035$	$\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481$	$\mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$
	(2i)	
$P\left(H \mid \mathrm{C}_{1}\right)=0 .$		
	C_{2}	C_{3}
	$\mathrm{P}\left(\mathrm{H}_{\mid \mathrm{C}}^{2}\right)=0.5$	$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

Comparison

After more experiments: HTHHHHHHHHH
ML (Maximum Likelihood):
$\mathrm{P}(\mathrm{H})=0.5$
after 10 experiments: $\mathrm{P}(\mathrm{H})=0.9$
MAP (Maximum A Posteriori):
$P(H)=0.9$
after 10 experiments: $P(H)=0.9$
Bayesian:
$P(H)=0.68$
after 10 experiments: $P(H)=0.9$

Did We Do The Right Thing?
$\mathrm{P}\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481 \quad \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485$
C_{2} and C_{3} are almost equally likely

$$
\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5 \quad \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9
$$

Bayesian Estimate		
Bayesian Estimate: Minimizes prediction error, given data assuming an arbitrary prior		
$P(H)=\sum_{i=1}^{2} P\left(H \mid C_{i}\right) P\left(C_{i}\right)=0.680$		
$\begin{gathered} P\left(\mathrm{C}_{1} \mid \mathrm{HT}\right)=0.035 \\ \\ \mathrm{C}_{1} \\ \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1 \end{gathered}$	$\mathrm{P}\left(\mathrm{C}_{2} \mid \mathrm{HT}\right)=0.481$ C_{2} $\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$	$\begin{gathered} \mathrm{P}\left(\mathrm{C}_{3} \mid \mathrm{HT}\right)=0.485 \\ \mathrm{C} \\ \mathrm{C}_{3} \\ \mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9 \end{gathered}$

What Prior to Use?

- Prev, you knew: it was one of only three coins
- Now more complicated...
- The following are two common priors
- Binary variable Beta
- Posterior distribution is binomial
- Easy to compute posterior
- Discrete variable Dirichlet
- Posterior distribution is multinomial
- Easy to compute posterior

Beta Distribution

- Example: Flip coin with Beta distribution as prior over p [prob(heads)]

1. Parameterized by two positive numbers: a, b
2. Mode of distribution $(E[p])$ is $a /(a+b)$
3. Specify our prior belief for $p=a /(a+b)$
4. Specify confidence in this belief with high initial values for a and b

- Updating our prior belief based on data
- incrementing a for every heads outcome
- incrementing b for every tails outcome
- So after h heads out of n flips, our posterior distribution says $P(h e a d)=(a+h) /(a+b+n)$

One Prior: Beta Distribution

$\underset{a, b}{\beta(x)}=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} x^{a} \quad 1(1-x)^{b} \quad 1$,
$0 \leq x \leq 1$ and $a, b>0$
Here $\Gamma(y)=\int_{0}^{\infty} x^{y-1} e^{-x} d x$
For any positive integer $y, \Gamma(y)=(y-1)$!

Using Bayes Nets for Classification

- One method of classification:
- Use a probabilistic model!
- Features are observed random variables F_{i}
- Y is the query variable
- Use probabilistic inference to compute most likely Y

$$
y=\operatorname{argmax}_{y} P\left(y \mid f_{1} \ldots f_{n}\right)
$$

- You already know how to do this inference

Naïve Bayes

- Naïve Bayes assumption:
- Features are independent given class:

$$
\begin{aligned}
P\left(X_{1}, X_{2} \mid Y\right) & =P\left(X_{1} \mid X_{2}, Y\right) P\left(X_{2} \mid Y\right) \\
& =P\left(X_{1} \mid Y\right) P\left(X_{2} \mid Y\right)
\end{aligned}
$$

- More generally:

$$
P\left(X_{1} \ldots X_{n} \mid Y\right)=\prod_{i} P\left(X_{i} \mid Y\right)
$$

- How many parameters?
- Suppose \mathbf{X} is composed of n binary features

Naïve Bayes for Text

- Bag-of-Words Naïve Bayes:
- Predict unknown class label (spam vs. ham)
- Assume evidence features (e.g. the words) are independent
- Warning: subtly different assumptions than before!

Word at position
Word at position i, not tith word in
the dictionary!
\qquad
$P\left(C, W_{1} \ldots W_{n}\right)=P(C) \prod_{i} P\left(W_{i} \mid C\right)$

- Tied distributions and bag-of-words
- Usually, each variable gets its own conditional probability distribution $P(F \mid Y)$
- In a bag-of-words model
- Each position is identically distributed
- All positions share the same conditional probs $\mathrm{P}(\mathrm{W} \mid \mathrm{C})$
- Why make this assumption?

A Popular Structure: Naïve Bayes

Assume that features are conditionally independent given class variable Works surprisingly well for classification (predicting the right class) But forces probabilities towards 0 and 1

A Spam Filter

- Naïve Bayes spam filter
- Data:
- Collection of emails, labeled spam or ham
- Note: someone has to hand label all this data!
- Split into training, heldout, test sets
- Classifiers
- Learn on the training set
- (Tune it on a held-out set)
- Test it on new emails

Dear Sir.

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret.

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS MAILINGS, SIMPLY REPLY TO THIS MESSAGE AND PUT "REMOVE" IN THE
SUBJECT
SUBJECT
99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell
Dimension XPS sitting in the Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but
when I plugged it in, hit the power nothing happened.

Estimation: Laplace Smoothing

- Laplace's estimate:
pretend you saw every outcome once more than you actually did

Can derive this as a MAP estimate with Dirichlet priors (Bayesian justification)

NB with Bag of Words for text classification
 Learning phase:

- Prior P(Y)
- Count how many documents from each topic (prior)
- $P\left(X_{i} \mid Y\right)$
- For each of m topics, count how many times you saw word X_{i} in documents of this topic ($+k$ for prior)
- Divide by number of times you saw the word ($+\mathrm{k} \times \mid$ words \mid)

Test phase:

- For each document
- Use naïve Bayes decision rule

$$
h_{N B}(\mathrm{x})=\arg \max _{y} P(y) \prod_{i=1}^{\text {LengthDoc }} P\left(x_{i} \mid y\right)
$$

What if we don't know structure?

Probabilities: Important Detail!

- $\mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}}\right)=\prod \mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{X}_{\mathrm{i}}\right)$

Any more potential problems here?

- We are multiplying lots of small numbers Danger of underflow!
- $0.5^{57}=7$ E-18
- Solution? Use logs and add!
- $p_{1} * p_{2}=e^{\log (p 1)+\log (p 2)}$
- Always keep in log form

Learning The Structure of Bayesian Networks

- Search thru the space...
- of possible network structures!
- (for now still assume can observe all values)
- For each structure, learn parameters
- As just shown...
- Pick the one that fits observed data best
- Calculate P(data)

Learning The Structure of Bayesian Networks

- Search thru the space...
- of possible network structures!
- For each structure, learn parameters
- As just shown...
- Pick the one that fits observed data best
- Calculate P(data)

Two problems:

- Fully connected will be most probable
- Add penalty term (regularization) \propto model complexity
- Exponential number of structures
- Local search

Score Functions

- Bayesian Information Criteion (BIC)
- P(D | BN) - penalty
- Penalty = ½ (\# parameters) Log (\# data points)
- MAP score
- $P(B N \mid D)=P(D \mid B N) P(B N)$
- $P(B N)$ must decay exponentially with \# of parameters for this to work well

