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CSE 573: Artificial Intelligence
Spring 2012

L i B i N t kLearning Bayesian Networks

Dan Weld

Slides adapted from Carlos Guestrin, Krzysztof Gajos, Dan 
Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Environment
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vs.
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vs.
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Blind search

Heuristic search

Mini-max & Expectimax
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Reinforcement learning

Algorithms
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State estimation

Knowledge Representation

HMMs

Bayesian networks

First-order logic

Description logic

Constraint networks

Markov logic networks

…

Learning

?

What is Machine Learning ?What is Machine Learning ?
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Machine Learning

Study of algorithms that
 improve their performance
 at some task

ith i

7©2005-2009 Carlos Guestrin

 with experience

Data Understanding
Machine 
Learning

Exponential Growth in Data

8©2005-2009 Carlos Guestrin

Data Understanding
Machine 
Learning

Supremacy of Machine Learning

 Machine learning is preferred approach to
 Speech recognition, Natural language processing
 Web search – result ranking
 Computer vision
 Medical outcomes analysis
 Robot control

C t ti l bi l

9©2005-2009 Carlos Guestrin

 Computational biology
 Sensor networks
 …

 This trend is accelerating
 Improved machine learning algorithms 
 Improved data capture, networking, faster computers
 Software too complex to write by hand
 New sensors / IO devices
 Demand for self-customization to user, environment

Space of ML Problems

W
hat is

Type of Supervision 
(eg, Experience, Feedback)

Labeled
Examples

Reward Nothing
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s B
eing Learned?
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Discrete 
Function

Classification Clustering

Continuous 
Function

Regression

Policy Apprenticeship 
Learning

Reinforcement
Learning

Classification

11©2009 Carlos 
Guestrin

Classification

from data to discrete classes

Spam filtering 
data prediction

12©2009 Carlos 
Guestrin
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Weather prediction

14©2009 Carlos 
Guestrin

Object detection
(Prof. H. Schneiderman)

15©2009 Carlos 
Guestrin

Example training images 
for each orientation

The classification pipeline
Training

17©2009 Carlos 
Guestrin

Testing

Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Nearest neighbor

Kernel density estimatio

Support vector machine

Machine Learning

Supervised Learning

Y Di tY C ti

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Y Discrete Y Continuous 

Gaussians
Learned in closed form

Linear Functions
1. Learned in closed form
2. Using gradient descent

Decision Trees
Greedy search; pruning

Probability of class | features
1. Learn P(Y), P(X|Y); apply Bayes 
2. Learn P(Y|X) w/ gradient descent

Non-probabilistic Linear Classifier
Learn w/ gradient descent

Regression

20©2009 Carlos 
Guestrin

Regression

predicting a numeric value
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Stock market

21©2009 Carlos 
Guestrin

Weather prediction revisted

22©2009 Carlos 
Guestrin

TemperatureTemperature

Clustering

23©2009 Carlos 
Guestrin

Clustering

discovering structure in data

Machine Learning

Supervised Learning

Parametric

Reinforcement Learning

Unsupervised Learning

Non-parametric
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Agglomerative Clustering

K-means  

Expectation Maximization (EM)

Principle Component Analysis 
(PCA)

Clustering Data: Group similar things Clustering images

26©2009 Carlos 
Guestrin

[Goldberger et al.]

Set of Images
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Clustering web search results

27©2009 Carlos 
Guestrin

In Summary 

W
hat is

Type of Supervision 
(eg, Experience, Feedback)

Labeled
Examples

Reward Nothing

28

s B
eing Learned?

p

Discrete 
Function

Classification Clustering

Continuous 
Function

Regression

Policy Apprenticeship 
Learning

Reinforcement
Learning

Key Concepts
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Key Concepts 

Classifier
3
.0

Hypothesis:
Function for labeling examples
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Generalization

 Hypotheses must generalize to correctly 
classify instances not in the training data.

31

 Simply memorizing training examples is a 
consistent hypothesis that does not 
generalize.

A Learning Problem

© Daniel S. Weld 32
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Hypothesis Spaces

© Daniel S. Weld 33

Why is Learning Possible?

Experience alone never justifies any 
conclusion about any unseen instance.

© Daniel S. Weld 34

Learning occurs when 

PREJUDICE meets DATA!

Learning a “Frobnitz”

Frobnitz Not a Frobnitz

35

Bias

The nice word for prejudice is “bias”.
Different from “Bias” in statistics

© Daniel S. Weld 36

What kind of hypotheses will you consider?
What is allowable range of functions you use when

approximating?

What kind of hypotheses do you prefer?

Some Typical Biases

Occam’s razor
“It is needless to do more when less will suffice” 

– William of Occam, 

di d 1349 f th Bl k l

© Daniel S. Weld 37

died 1349 of the Black plague

MDL – Minimum description length

Concepts can be approximated by 

 ... conjunctions of predicates

... by linear functions

... by short decision trees

ML = Function Approximation
May not be any perfect fit
Classification ~ discrete functions

h(x)

h(x) = contains(`nigeria’, x)          
contains(`wire-transfer’, x)

c(x)

x
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Learning as Optimization

 Preference Bias

 Loss Function
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)( ) ( ) p y( )

 Error + regularization

 Methods
 Closed form

 Greedy search

 Gradient ascent

Bias / Variance Tradeoff
 Variance: E[ (h(x*) – h(x*))2 ]

How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]

Slide from T Dietterich

[ ( ) ( )]

Describes the average error of h(x*)

Reducing bias risks overfitting

Note: inductive bias vs estimator bias

Regularization Regularization:            vs. 

Learning as Optimization
 Methods
 Closed form

 Greedy search

 Gradient ascent

 Loss Function
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)

 Error + regularization

Bia / Variance Tradeoff
 Variance: E[ (h(x*) – h(x*))2 ]

How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]

Slide from T Dietterich

[ ( ) ( )]

Describes the average error of h(x*)

Reducing bias risks overfitting
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Regularization Regularization:            vs. 

Overfitting

 Hypothesis H is overfit when  H’ and
 H has smaller error  on training examples, but
 H has bigger error on test examplesgg p

Overfitting

 Hypothesis H is overfit when  H’ and
 H has smaller error  on training examples, but
 H has bigger error on test examples

 Causes of overfitting Causes of overfitting
 Training set is too small
 Large number of features 

 Big problem in machine learning
 Solutions: bias, regularization
 Validation set

Overfitting

Accuracy

0.9

0 8

On training data
On test data

© Daniel S. Weld 49

0.8

0.7

0.6

Model complexity (e.g., number of nodes in decision tree)

Learning Bayes Nets

 Learning Parameters for a Bayesian Network
 Fully observable
 Maximum Likelihood (ML)

© Daniel S. Weld

 Maximum A Posteriori (MAP)

 Bayesian

 Hidden variables (EM algorithm)

 Learning Structure of Bayesian Networks
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What’s in a Bayes Net?

Earthquake Burglary
Pr(B=t) Pr(B=f)

0.05    0.95

Pr(A|E,B)
e b    0 9 (0 1)

© Daniel S. Weld 51

Alarm

Nbr2CallsNbr1Calls

e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...We have: 

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?

P(¬B) = 1- P(B) 

= 0.4

= 0.6

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Parameter Estimation and Bayesian 
Networks

Coin

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations



11/9/2012

10

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1)=0.1 

C1 C2 C3

P(C1)=1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data

Terminology

Prior: 
 Probability of a hypothesis before we see any data

Uniform Prior: 
 A prior that makes all hypothesis equally likelyA prior that makes all hypothesis equally likely

Posterior: 
 Probability of a hypothesis after we saw some data

Likelihood: 
 Probability of data given hypothesis

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 2: Tails

Now, Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3
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Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.21P(C2|HT) = 0.58 P(C3|HT) = 0.21

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 5

Most likely coin: 

C

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

P(H|C2) = 0.5C2

Your Estimate?

Most likely coin: Best estimate for P(H) 

P(H|C ) = 0 5C

Maximum Likelihood Estimate: The best hypothesis
that fits observed data assuming uniform prior

P(H|C2) = 0.5

C2

P(C2) = 1/3

P(H|C2) = 0.5C2

Using Prior Knowledge

 Should we always use a Uniform Prior ?

 Background knowledge:
Heads => we have to buy Dan chocolate

D lik h l tDan likes chocolate…

=> Dan is more likely to use a coin biased in his favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Using Prior Knowledge

We can encode it in the prior:

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.006P(C2|H) = 0.165 P(C3|H) = 0.829

P(C |H) 0 066P(C |H) 0 333 P(C |H) 0 600
Compare with ML posterior after Exp 1:

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066P(C2|H) = 0.333 P(C3|H) = 0.600

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = ? P(C2|HT) = ? P(C3|HT) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT) = 0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Experiment 2: Tails

Which coin did I use?
P(C1|HT) = 0.035 P(C2|HT)=0.481 P(C3|HT) = 0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

Your Estimate?

What is the probability of heads after two experiments?

Best estimate for P(H) 

P(H|C ) = 0 9C

Most likely coin: 

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(H|C3) = 0.9C3

Your Estimate?

Most likely coin: Best estimate for P(H) 

Maximum A Posteriori (MAP) Estimate: 
The best hypothesis that fits observed data 

assuming a non-uniform prior

P(H|C3) = 0.9C3

P(H|C3) = 0.9

C3

P(C3) = 0.70
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Did We Do The Right Thing?

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

Did We Do The Right Thing?

P(C1|HT) =0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

C2 and C3 are almost 
equally likely

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

equally likely

A Better Estimate

Recall: = 0.680

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

Bayesian Estimate

= 0.680

Bayesian Estimate: Minimizes prediction error, 
given data assuming an arbitrary prior

P(C1|HT)=0.035 P(C2|HT)=0.481 P(C3|HT)=0.485

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1
C1 C2 C3

Comparison 
After more experiments: HTHHHHHHHHH

ML (Maximum Likelihood):
P(H) = 0.5
after 10 experiments: P(H) = 0.9

MAP (Maximum A Posteriori):( )
P(H) = 0.9
after 10 experiments: P(H) = 0.9

Bayesian:
P(H) = 0.68
after 10 experiments: P(H) = 0.9

Summary
Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Uniform The most likely

Any The most likely

Any Weighted 

Easy to compute

Bayesian Estimate Any g
combination

Still easy to compute
Incorporates prior 
knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute
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Bayesian Learning

Use Bayes rule:
Prior

Data Likelihood

Posterior P(Y | X)  =  P(X |Y) P(Y)
P(X)

Or equivalently:  P(Y | X)  P(X | Y) P(Y)

Normalization

P(X)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?
-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Prior

+ data = 
-2

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

Now compute
either MAP or

Bayesian estimate

What Prior to Use?
 Prev, you knew: it was one of only three coins

 Now more complicated…

 The following are two common priors

 Binary variable Beta
 Posterior distribution is binomial

 Easy to compute posterior

 Discrete variable Dirichlet
 Posterior distribution is multinomial

 Easy to compute posterior © Daniel S. Weld83

Beta Distribution

Beta Distribution
 Example: Flip coin with Beta distribution as prior 

over p [prob(heads)]
1. Parameterized by two positive numbers: a, b

2. Mode of distribution (E[p]) is a/(a+b)

3. Specify our prior belief for p = a/(a+b)

4. Specify confidence in this belief with high initial values 
for a and b

 Updating our prior belief based on data
 incrementing a for every heads outcome

 incrementing b for every tails outcome

 So after h heads out of n flips, our posterior 
distribution says P(head)=(a+h)/(a+b+n)

One Prior: Beta Distribution

a,b

For any positive integer y, (y) = (y-1)!
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B|data) = ?

Prior
“+ data” = Beta(1,4) (3,7) .3

B ¬B

.7

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

Beta(2,3)

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Prior

+ data= Beta(2,3) Beta(3,4)

Output of Learning

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

E B R A J M

T F T T F T

F F F F F T

F T F T T T

F F F T T T

F T F F F F

...

Did Learning Work Well?

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

E B R A J M

T F T T F T

F F F F F T

F T F T T T

F F F T T T

F T F F F F

...

Can easily calculate  
P(data) for learned parameters

Learning with Continuous Variables

Earthquake

Pr(E=x)
mean:  = ?

variance:  = ?

© Daniel S. Weld
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Using Bayes Nets for Classification

 One method of classification:
 Use a probabilistic model!

 Features are observed random variables Fi

 Y is the query variable

 Use probabilistic inference to compute most likely Y

 You already know how to do this inference

A Popular Structure: Naïve Bayes

Y
Class
Value

…

F 2 F NF 1 F 3

Assume that features are conditionally independent given class variable
Works surprisingly well for classification (predicting the right class)

But forces probabilities towards 0 and 1 

Naïve Bayes

 Naïve Bayes assumption:
 Features are independent given class:

 More generally:

 How many parameters?
 Suppose X is composed of n binary features

A Spam Filter

 Naïve Bayes spam filter

 Data:
 Collection of emails, 

labeled spam or ham

Dear Sir.

First, I must solicit your confidence in this 
transaction, this is by virture of its nature as 
being utterly confidencial and top secret. …

TO BE REMOVED FROM FUTURE 

 Note: someone has to 
hand label all this data!

 Split into training, held-
out, test sets

 Classifiers
 Learn on the training set
 (Tune it on a held-out set)
 Test it on new emails

MAILINGS, SIMPLY REPLY TO THIS 
MESSAGE AND PUT "REMOVE" IN THE 
SUBJECT.

99  MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, Iknow this is blatantly OT but I'm 
beginning to go insane. Had an old Dell 
Dimension XPS sitting in the corner and 
decided to put it to use, I know it was 
working pre being stuck in the corner, but 
when I plugged it in, hit the power nothing 
happened.

Naïve Bayes for Text
 Bag-of-Words Naïve Bayes:

 Predict unknown class label (spam vs. ham)
 Assume evidence features (e.g. the words) are independent
 Warning: subtly different assumptions than before!

 Generative model
Word at position 
i, not ith word in 
the dictionary!

 Tied distributions and bag-of-words
 Usually, each variable gets its own conditional probability distribution 

P(F|Y)
 In a bag-of-words model

 Each position is identically distributed
 All positions share the same conditional probs P(W|C)
 Why make this assumption?

the dictionary!

Estimation: Laplace Smoothing

 Laplace’s estimate:
pretend you saw every outcome 

once more than you actually did
H H T

Can derive this as a MAP estimate with Dirichlet priors
(Bayesian justification)
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NB with Bag of Words for text 
classification

 Learning phase:
 Prior P(Y)

 Count how many documents from each topic (prior)

 P(Xi|Y) 

 For each of m topics, count how many times you saw 
word Xi in documents of this topic (+ k for prior)word Xi in documents of this topic (  k for prior)

 Divide by number of times you saw the word (+ k|words|)

 Test phase:
 For each document

 Use naïve Bayes decision rule

Probabilities: Important Detail!

Any more potential problems here?

 P(spam | X1 … Xn) =   P(spam | Xi)i

 We are multiplying lots of small numbers We are multiplying lots of small numbers 
Danger of underflow!

 0.557 = 7 E -18       

 Solution? Use logs and add!
 p1 * p2 = e log(p1)+log(p2)

 Always keep in log form

Naïve Bayes

Y
Class
Value

…

F 2 F NF 1 F 3

Assume that features are conditionally independent given class variable
Works surprisingly well for classification (predicting the right class)

But forces probabilities towards 0 and 1 

Example Bayes’ Net: Car

What if we don’t know 
structure?

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!
 (for now still assume can observe all values)

 For each structure, learn parameters
 As just shown…

 Pick the one that fits observed data best
 Calculate P(data)
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A

E

C

D

B

A AA

E

C

D

B

A

E

C

D

B

Two problems:
• Fully connected will be most probable
• Exponential number of structures

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!

 For each structure, learn parameters
 As just shown…j

 Pick the one that fits observed data best
 Calculate P(data)

Two problems:
• Fully connected will be most probable

• Add penalty term (regularization)  model complexity
• Exponential number of structures

• Local search
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Score Functions

 Bayesian Information Criteion (BIC)
 P(D | BN) – penalty

 Penalty = ½ (# parameters) Log (# data points)

 MAP score
 P(BN | D) = P(D | BN) P(BN)

 P(BN) must decay exponentially with # of 
parameters for this to work well
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Learning as Optimization

 Preference Bias

 Loss Function
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)( ) ( ) p y( )

 Error + regularization

 Methods
 Closed form

 Greedy search

 Gradient ascent

Topics

 Learning Parameters for a Bayesian Network
 Fully observable
 Maximum Likelihood (ML), 

 Maximum A Posteriori (MAP)
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 Maximum A Posteriori (MAP)

 Bayesian

 Hidden variables (EM algorithm)

 Learning Structure of Bayesian Networks


