CSE 573: Artificial Intelligence Spring 2012

Structure Learning, EM, Cotraining

Dan Weld

Slides adapted from Carlos Guestrin, Krzysztof Gajos, Dan Klein, Stuart Russell, Andrew Moore \& Luke Zettlemoyer

Some Typical Biases

- Occam's razor
- MDL - Minimum description length
- Concepts can be approximated by
... conjunctions of predicates,
... linear functions
... short decision trees
- Maximal conditional independence
- Minimum cross-validation error
- Minimum number of features
- Etc..

Overfitting

Learning as Optimization

- Methods
- Closed form
- Greedy search
- Gradient ascent
- Loss Function (preference bias)
- Minimize loss over training data (test data)
- Loss(h,data) = error(h, data) + complexity(h)

Effect of Regularization

Topics

- Learning Parameters for a Bayesian Network
- Fully observable
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks
- Cool Stuff
- Learning Ensembles
- Cotraining

What if we don't know structure?

Learning The Structure of Bayesian Networks

Search thru the space...

- of possible network structures!
- (for now still assume can observe all values)
- For each structure, learn parameters
- As just shown...

Pick the one that fits observed data best

- Calculate P(data)

Learning The Structure of Bayesian Networks

Search thru the space...

- of possible network structures!
- For each structure, learn parameters
- As just shown...

Pick the one that fits observed data best

- Calculate P(data)

Two problems:

- Fully connected will be most probable
- Add penalty term (regularization) \propto model complexity
- Exponential number of structures
- Local search

Score Functions

- Bayesian Information Criterion (BIC)
- P(D|BN) - penalty
- Penalty = $1 / 2$ (\# parameters) Log (\# data points)
- MAP score
- $P(B N \mid D)=P(D \mid B N) P(B N)$
- $P(B N)$ must decay exponentially with \# of parameters for this to work well
- Loss(h,data) = error(h, data) + complexity(h)

Doniel s . Weld

Why Learn Hidden Variables?

Chicken \& Egg Problem

- If we knew whether patient had disease
- It would be easy to learn CPTs
- But we can't observe states, so we don't!

- If we knew CPTs
- It would be easy to predict if patient had disease
- But we don't, so we can't!

Slide by Daniel 5 . Weld
23

Continuous Variables

Chicken \& Egg

Note that coloring instances would be easy if we knew Gaussian parameters....

Slide by Daniel S. Weld 29

Expectation Maximization (EM)

- Pretend we do know the parameters
- Initialize randomly: set $\theta_{1}=$?; $\quad \theta_{2}=$?

Expectation Maximization (EM)

- Pretend we do know the parameters
- Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally values

Expectation Maximization (EM)

- Pretend we do know the parameters
- Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable

ML Mean of Single Gaussian

$\mathrm{U}_{\mathrm{ml}}=\operatorname{argmin}_{\mathrm{u}} \sum_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{u}\right)^{2}$

$\begin{array}{lllll}.07 & .05 & .05\end{array}$
Slide by Daniel s. Weld

EM

- Works for multiple hidden variables
\& other parametric forms
- E.g., Baum-Welch algorithm for HMMs
- Optimality?
- Complexity?
- Search?

Topics

- Learning Parameters for a Bayesian Network
- Fully observable
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks
- Cool Stuff
- Learning Ensembles
- Cotraining

Ensembles of Classifiers

- Traditional approach: Use one classifier
- Can one do better?
- Approaches:
- Cross-validated committees
- Bagging
- Boosting
- Stacking
© Daniel S. Weld

Ensembles of Classifiers

- Assume
- Errors are independent (suppose 30\% error)
- Majority vote
- Probability that majority is wrong...
$=$ area under binomial distribution

Number of classifiers in error

- If individual area is 0.3
- Area under curve for ≥ 11 wrong is 0.026
- Order of magnitude improvement!

Constructing Ensembles Cross-validated committees

- Partition examples into k disjoint equiv classes
- Now create k training sets
- Each set is union of all equiv classes except one
- So each set has (k-1)/k of the original training data

Now train a classifier on each set

44

Bagging Example

100 bagged trees

Ensemble Construction II Bagging

- Generate k sets of training examples
- For each set
- Draw m examples randomly (with replacement)
- From the original set of m examples
- Each training set corresponds to
- 63.2\% of original (+ duplicates)
- Now train classifier on each set
- Intuition: Sampling helps algorithm become more robust to noise/outliers in the data

$$
45 \quad \text { © Daniel S. Weld }
$$

Boosting

[Schapire, 1989]

- Idea: run weak learner multiple times on (reweighted!) training data; weight learned classifiers \propto their accuracy
- On each iteration t :
- Learn a hypothesis, h_{t}, using distribution to weight examples
- Compute a strength for this hypothesis $-\alpha_{t}$
- Reweight training examples by how well they were classified
- Final classifier:

$$
h(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i} h_{i}(x)\right)
$$

- Practically useful
- Theoretically interesting

Ensemble Creation IV Stacking

- Train several base learners
- Next train meta-learner
- Learns when base learners are right / wrong
- Now meta learner arbitrates

Train using cross validated committees

- Meta-L inputs = base learner predictions
- Training examples $=$ 'test set' from cross validation

Topics

- Learning Parameters for a Bayesian Network
- Fully observable
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks
- Cool Stuff
- Learning Ensembles
- Semi-supervised learning (Cotraining)

