CSE 573: Artificial Intelligence Spring 2012

Structure Learning, EM, Cotraining

Dan Weld

Slides adapted from Carlos Guestrin, Krzysztof Gajos, Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Some Typical Biases

- Occam's razor
- MDL Minimum description length
- Concepts can be approximated by
 - ... conjunctions of predicates,
 - ... linear functions
 - ... short decision trees
- Maximal conditional independence

3

- Minimum cross-validation error
- Minimum number of features
- Etc..

Daniel S. Weld

Learning The Structure of Bayesian Networks

- Search thru the space...
 - of possible network structures!
- (for now still assume can observe all values)
- For each structure, learn parameters
 - As just shown...
- Pick the one that fits observed data best
 - Calculate P(data)

Learning The Structure of Bayesian Networks

- Search thru the space...
- of possible network structures!
- For each structure, learn parameters
 As just shown...
- Pick the one that fits observed data best
 - Calculate P(data)

Two problems:

- Fully connected will be most probable
- Add penalty term (regularization) \propto model complexity
- Exponential number of structures
 Local search

Score Functions

- Bayesian Information Criterion (BIC)
 - P(D | BN) penalty
 - Penalty = ½ (# parameters) Log (# data points)
- MAP score
 - P(BN | D) = P(D | BN) P(BN)
 - P(BN) must decay exponentially with # of parameters for this to work well
- Loss(h,data) = error(h, data) + complexity(h)

@ Daniel S. Weld

