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Some Typical Biases
CSE 573: Artificial Intelligence

= Occam’s razor

Sprlng 2012 We are to admit no more causes of

natural things than such as are both true
and sufficient to explain their appearances
— William of Ockham (1288-1348)

Structure Learning, EM, Cotraining

Dan Weld

Slides adapted from Carlos Guestrin, Krzysztof Gajos, Dan
Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Some Typical Biases Overfitting

= Occam’s razor
= MDL — Minimum description length
= Concepts can be approximated by 0.9 //f/
... conjunctions of predicates, )
... linear functions 0.8
.. short decision trees
= Maximal conditional independence 07

= Minimum cross-validation error
= Minimum number of features

Accuracy On training data

On test data

0.6

= Etc.. Model complexity (e.g., number of nodes in decision tree)
Learning as Optimization Effect of Regularization
= Methods ' ;

= Closed form

= Greedy search = _
= Gradient ascent . 7R, :
= Loss Function (preference bias) o E—JL—“———H__" of /
= Minimize loss over training data (test data) ! e °_,.°
= Loss(h,data) = error(h, data) + complexity(h) ! '

Regularization term /Eg A lw|[?




Bias / Variance Tradeoff

= Variance: E[ (h(x*) —h(x*))?]
How much h(x*) varies between training sets
Reducing variance risks underfitting

= Bias: [h(x*) — f(x*)] >
Describes the average error of h(x*)
Reducing bias risks overfitting

Note: inductive bias vs estimator bias
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Bias-Variance Tradeoff

Topics

= Learning Parameters for a Bayesian Network
= Fully observable
= Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks
= Cool Stuff
= | earning Ensembles
= Cotraining
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Parameter Estimation and Bayesian
Networks

Now compute

P(B) = i + data = either MAP or

Bayesian estimate

1
Training
Test
Z 0s
0
-35 =30,y <25 -20
High Variance High Bias
Summary
Prior Hypothesis
Maximum Likelihood Uniform The most likely
Estimate
Maximum A Any The most likely
Posteriori Estimate
Weighted
Bayesian Estimate Any combination

Minimizes error
Great when data is scarce

iy Beta & Dirichlet
Potentially much harder to compute

Learning with Continuous Variables

7 (Berthquake
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A Popular Structure: Naive Bayes

P(Y,F1...Fp) = P(Y) HP(Fi\Y)

F1 F2 F3

Works surprisingly well for classification (predicting the right class)

Assume that features are conditionally independent given class variable
But forces probabilities towards 0 and 1

What if we don’t know
structure?

Learning The Structure
of Bayesian Networks

= Search thru the space...
= of possible network structures!
= (for now still assume can observe all values)

= For each structure, learn parameters

= As just shown...
= Pick the one that fits observed data best

= Calculate P(data)

®
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Two problems:
« Fully connected graph will be most probable

« Exponential number of structures

Learning The Structure
of Bayesian Networks

= Search thru the space...
= of possible network structures!
= For each structure, learn parameters

= As just shown...
= Pick the one that fits observed data best

= Calculate P(data)

Two problems:
« Fully connected will be most probable

» Add penalty term (regularization) oC model complexity
« Exponential number of structures
 Local search




Score Functions
= Bayesian Information Criterion (BIC)
= P(D | BN) — penalty
= Penalty = ¥ (# parameters) Log (# data points)

= MAP score
= P(BN | D) = P(D | BN) P(BN)

= P(BN) must decay exponentially with # of
parameters for this to work well

= Loss(h,data) = error(h, data) + complexity(h)

© Daniel 5. Weld
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Why Learn Hidden Variables?
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Topics

= Learning Parameters for a Bayesian Network
= Fully observable

= Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks
= Cool Stuff

= Learning Ensembles
= Cotraining
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Chicken & Egg Problem

= |f we knew whether patient had disease
= Itwould be easy to learn CPTs
= Butwe can't observe states, so we don't!

e If we knew CPTs

— It would be easy to predict if patient had disease
— Butwe don't, so we can't!
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Continuous Variables

Earthquake




Simplest Version
= Mixture of two distributions

O;. .03 .05 .07 .09

= Know: form of distribution & variance,
c=1

= Just need mean of each distribution
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Input Looks Like

.01 .03 .05 .07 .09

We Want to Predict

?
IRTUT ! T AT T T T

.01 .03 .05 .07 .09
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Chicken & Egg

Note that coloring instances would be easy
if we knew Gaussian parameters....

Chicken & Egg

And finding the Gaussians would be easy
if we knew the coloring

I 8 1 1

.01 .03 .05 .07 .09
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Expectation Maximization (EM)

= Pretend we do know the parameters
= Initialize randomly: set 0,=?; 0,=7?

.01 .03 .05 .07 .09
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Expectation Maximization (EM)

= Pretend we do know the parameters
= Initialize randomly

= [E step] Compute probability of instance having
each possible value of the hidden variable
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Expectation Maximization (EM)

= Pretend we do know the parameters
= |nitialize randomly

= [E step] Compute probability of instance having
each possible value of the hidden variable

33

Expectation Maximization (EM)

= Pretend we do know the parameters
= |nitialize randomly

= [E step] Compute probability of instance having
each possible value of the hidden variable

[M step] Treating each instance as fractionally
halvmg both valtues compute the new parameter
values

111 111
.01 .03 .05 .07 .09
34
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ML Mean of Single Gaussian

U, = argmin,, Zi(xi —u)?

.01 .03 .05 .07 .09

Expectation Maximization (EM)

[M step] Treating each instance as fractionally
halvmg both valtes compute the new paramefer
values

Slide by Daniel S. Weld
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Expectation Maximization (EM)

= [E step] Compute probability of instance having
each possible value of the hidden variable
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Expectation Maximization (EM)

= [E step] Compute probability of instance having
each possible value of the hidden variable

[M step] Treating each instance as fractionall

having both values compute the new paramefer
values
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EM

= Works for multiple hidden variables
& other parametric forms
» E.g., Baum-Welch algorithm for HMMs

= Optimality?
= Complexity?

= Search?

40

Ensembles of Classifiers

= Traditional approach: Use one
classifier

= Can one do better?
= Approaches:

» Cross-validated committees
* Bagging
« Boosting
« Stacking

© Daniel S. Weld
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Expectation Maximization (EM)

= [E step] Compute probability of instance having
each possible value of the hidden variable

[M step] Treating each instance as fractionall

having both values compute the new paramefer
values
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= Learning Parameters for a Bayesian Network
= Fully observable
= Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks
= Cool Stuff
= | earning Ensembles
= Cotraining
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Ensembles of Classifiers
= Assume

= Errors are independent (suppose 30% error)
= Majority vote

= Probability that majority is wrong...

= area under binomial distribution
Prob 0.2 A
ve&%
S o
0.1 ?’2\6;‘5{\\6‘

Number of ifiers in error

e If individual area is 0.3
¢ Area under curve for >11 wrong is 0.026

» Order of magnitude improvement!
© Daniel S. Weld
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Constructing Ensembles Ensemble Construction Il
Cross-validated committees Bagging
= Partition examples into k disjoint equiv classes = Generate k sets of training examples
= Now create k training sets = For each set _
= Each set is union of all equiv classes except one = Draw m examples randomly (with replacement)
* So each set has (k-1)/k of the original training data = From the original set of m examples

= Each training set corresponds to
= 63.2% of original (+ duplicates)
= Now train classifier on each set

= Intuition: Sampling helps algorithm become
more robust to noise/outliers in the data

= Now train a classifier on each set

4 © Daniel S. Weld
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decision tree learning algorithm; very similar to ID3
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Boosting  (schapire, 1989]

= |dea: run weak learner multiple times on (reweighted!)
training data; weight learned classifiers o« their
accuracy

= On each iteration t:

= Learn a hypothesis, h,, using distribution to weight
examples

= Compute a strength for this hypothesis — o,

= Reweight training examples by how well they were
classified

| Final classifier: h(z) = sign (Z aihi(x)>
T T T T T i

1.0 0.5 00 05 1.0

shades of blue/red indicate strength of vote for particular classification

Practically useful
= Theoretically interesting




Bagging vs Boosting

Bagged Decrsion Rule Boosted Decision Rule
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Ensemble Creation IV
Stacking
= Train several base learners
= Next train meta-learner

= Learns when base learners are right / wrong
= Now meta learner arbitrates

Train using cross validated committees
* Meta-L inputs = base learner predictions
« Training examples = ‘test set’ from cross validation
53 © Daniel S. Weld

Topics

= Learning Parameters for a Bayesian Network
= Fully observable

= Hidden variables (EM algorithm)
= Learning Structure of Bayesian Networks
= Cool Stuff

= | earning Ensembles

= Semi-supervised learning (Cotraining)
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