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CSE 573: Artificial Intelligence
Spring 2012

St t L i EM C t i iStructure Learning, EM, Cotraining

Dan Weld

Slides adapted from Carlos Guestrin, Krzysztof Gajos, Dan 
Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Some Typical Biases

Occam’s razor
We are to admit no more causes of 
natural things than such as are both true 
and sufficient to explain their appearances 
– William of Ockham (1288-1348)
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Some Typical Biases

Occam’s razor

MDL – Minimum description length

Concepts can be approximated by 

...  conjunctions of predicates, 

linear functions
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...  linear functions

...  short decision trees

 Maximal conditional independence

 Minimum cross-validation error

 Minimum number of features

 Etc..

Overfitting

Accuracy

0.9

0 8

On training data
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Model complexity (e.g., number of nodes in decision tree)

On test data

Learning as Optimization
 Methods
 Closed form

 Greedy search

 Gradient ascent

 Loss Function (preference bias)
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)

Regularization term E.g.,   ||w||2

Effect of Regularization 
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Bias / Variance Tradeoff

 Variance: E[ (h(x*) – h(x*))2 ]

How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]

Slide from T Dietterich
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Describes the average error of h(x*)

Reducing bias risks overfitting

Note: inductive bias vs estimator bias

Bias-Variance Tradeoff

High Variance High Bias

Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)
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 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Cotraining

Summary
Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Uniform The most likely

Any The most likely

Any Weighted 
Bayesian Estimate Any g

combination

Minimizes error
Great when data is scarce
Potentially much harder to compute

Beta & Dirichlet

Parameter Estimation and Bayesian 
Networks

E B R A J M
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F F F F F T
F T F T T T
F F F T T TF F F T T T
F T F F F F
...

P(B) = ?
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Now compute
either MAP or

Bayesian estimate

Learning with Continuous Variables

Earthquake

Pr(E=x)
mean:  = ?

variance:  = ?

© Daniel S. Weld



11/14/2012

3

A Popular Structure: Naïve Bayes

Y
Class
Value

…

F 2 F NF 1 F 3

Assume that features are conditionally independent given class variable
Works surprisingly well for classification (predicting the right class)

But forces probabilities towards 0 and 1 

What if we don’t know 
structure?

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!
 (for now still assume can observe all values)

 For each structure, learn parameters
 As just shown…

 Pick the one that fits observed data best
 Calculate P(data)
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Two problems:
• Fully connected graph will be most probable
• Exponential number of structures

…

Enumerate

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!

 For each structure, learn parameters
 As just shown…j

 Pick the one that fits observed data best
 Calculate P(data)

Two problems:
• Fully connected will be most probable

• Add penalty term (regularization)  model complexity
• Exponential number of structures

• Local search
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Score Functions
 Bayesian Information Criterion (BIC)
 P(D | BN) – penalty

 Penalty = ½ (# parameters) Log (# data points)

 MAP score MAP score
 P(BN | D) = P(D | BN) P(BN)

 P(BN) must decay exponentially with # of 
parameters for this to work well

 Loss(h,data) = error(h, data) + complexity(h)
© Daniel S. Weld
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Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)
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 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Cotraining

Why Learn Hidden Variables? Chicken & Egg Problem

 If we knew whether patient had disease
 It would be easy to learn CPTs

 But we can’t observe states, so we don’t!
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• If we knew CPTs
– It would be easy to predict if patient had disease

– But we don’t, so we can’t!

24

Continuous Variables

Aliens

Pr(A=t)
0.01 hidden

© Daniel S. Weld

Earthquake

Pr(E|A)
a  = 6

 = 2
a  = 1

 = 3
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Simplest Version
 Mixture of two distributions

26

 Know: form of distribution & variance,
 =1

 Just need mean of each distribution

.01   .03   .05   .07   .09
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Input Looks Like
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.01     .03     .05     .07     .09
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We Want to Predict
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.01     .03     .05     .07     .09

?
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Chicken & Egg
Note that coloring instances would be easy 

if we knew Gaussian parameters….
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Chicken & Egg
And finding the Gaussians would be easy

if we knew the coloring
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Expectation Maximization (EM)

 Pretend we do know the parameters

 Initialize randomly: set  1=?;   2=?

31
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Expectation Maximization (EM)
 Pretend we do know the parameters
 Initialize randomly

 [E step] Compute probability of instance having 
each possible value of the hidden variable
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Expectation Maximization (EM)
 Pretend we do know the parameters
 Initialize randomly

 [E step] Compute probability of instance having 
each possible value of the hidden variable
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Expectation Maximization (EM)
 Pretend we do know the parameters
 Initialize randomly

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally
having both values compute the new parameter 

34
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having both values compute the new parameter 
values
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ML Mean of Single Gaussian

Uml = argminui(xi – u)2
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Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally 
having both values compute the new parameter 

36

.01     .03     .05     .07     .09

having both values compute the new parameter 
values

Slide by Daniel S. Weld

Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable
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Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally 
h i  b th l  t  th   t  

38
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p g y
having both values compute the new parameter 
values

Slide by Daniel S. Weld

Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally 
h i  b th l  t  th   t  
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p g y
having both values compute the new parameter 
values
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EM

 Works for multiple hidden variables

& other parametric forms
 E.g., Baum-Welch algorithm for HMMs

 Optimality?

 Complexity?

 Search?

40

Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)
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 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Cotraining

Ensembles of Classifiers 

 Traditional approach: Use one 
classifier
 Can one do better?

A h

© Daniel S. Weld

 Approaches:
• Cross-validated committees
• Bagging
• Boosting
• Stacking

Ensembles of Classifiers
 Assume 
 Errors are independent (suppose 30% error)
 Majority vote

 Probability that majority is wrong…

Prob  0.2

 = area under binomial distribution

© Daniel S. Weld

• If individual area is 0.3
• Area under curve for 11 wrong is 0.026
• Order of magnitude improvement!

0.1

Number of classifiers in error
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Constructing Ensembles

 Partition examples into k disjoint equiv classes
 Now create k training sets
 Each set is union of all equiv classes except one

Cross-validated committees
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 Each set is union of all equiv classes except one
 So each set has (k-1)/k of the original training data

 Now train a classifier on each set

H
ol

do
ut

Ensemble Construction II

 Generate k sets of training examples
 For each set
 Draw m examples randomly (with replacement)

Bagging
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Draw m examples randomly (with replacement) 
 From the original set of m examples

 Each training set corresponds to 
 63.2% of original (+ duplicates)

 Now train classifier on each set
 Intuition: Sampling helps algorithm become 

more robust to noise/outliers in the data

47

decision tree learning algorithm; very similar to ID3

48

shades of blue/red indicate strength of vote for particular classification

Boosting
 Idea: run weak learner multiple times on (reweighted!) 

training data; weight learned classifiers  their 
accuracy

 On each iteration t: 
 Learn a hypothesis, ht, using distribution to weight 

examples

[Schapire, 1989]

examples
 Compute a strength for this hypothesis – t

 Reweight training examples by how well they were 
classified

 Final classifier:

 Practically useful
 Theoretically interesting
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Bagging vs Boosting
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Ensemble Creation IV
Stacking

 Train several base learners
 Next train meta-learner
 Learns when base learners are right / wrong
 Now meta learner arbitrates

© Daniel S. Weld
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 Train using cross validated committees
• Meta-L inputs = base learner predictions
• Training examples = ‘test set’ from cross validation

Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)
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 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Semi-supervised learning (Cotraining)


