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CSE 573: Artificial Intelligence
Spring 2012

St t L i EM C t i iStructure Learning, EM, Cotraining

Dan Weld

Slides adapted from Carlos Guestrin, Krzysztof Gajos, Dan 
Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer
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Some Typical Biases

Occam’s razor
We are to admit no more causes of 
natural things than such as are both true 
and sufficient to explain their appearances 
– William of Ockham (1288-1348)
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Some Typical Biases

Occam’s razor

MDL – Minimum description length

Concepts can be approximated by 

...  conjunctions of predicates, 

linear functions
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...  linear functions

...  short decision trees

 Maximal conditional independence

 Minimum cross-validation error

 Minimum number of features

 Etc..

Overfitting

Accuracy

0.9

0 8

On training data
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0.8

0.7

0.6

Model complexity (e.g., number of nodes in decision tree)

On test data

Learning as Optimization
 Methods
 Closed form

 Greedy search

 Gradient ascent

 Loss Function (preference bias)
 Minimize loss over training data (test data)

 Loss(h,data) = error(h, data) + complexity(h)

Regularization term E.g.,   ||w||2

Effect of Regularization 
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Bias / Variance Tradeoff

 Variance: E[ (h(x*) – h(x*))2 ]

How much h(x*) varies between training sets

Reducing variance risks underfitting

 Bias: [h(x*) – f(x*)]

Slide from T Dietterich
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Describes the average error of h(x*)

Reducing bias risks overfitting

Note: inductive bias vs estimator bias

Bias-Variance Tradeoff

High Variance High Bias

Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)
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 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Cotraining

Summary
Prior Hypothesis

Maximum Likelihood 
Estimate

Maximum A 
Posteriori Estimate

Uniform The most likely

Any The most likely

Any Weighted 
Bayesian Estimate Any g

combination

Minimizes error
Great when data is scarce
Potentially much harder to compute

Beta & Dirichlet

Parameter Estimation and Bayesian 
Networks
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F T F F F F
...

P(B) = ?
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Now compute
either MAP or

Bayesian estimate

Learning with Continuous Variables

Earthquake

Pr(E=x)
mean:  = ?

variance:  = ?
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A Popular Structure: Naïve Bayes

Y
Class
Value

…

F 2 F NF 1 F 3

Assume that features are conditionally independent given class variable
Works surprisingly well for classification (predicting the right class)

But forces probabilities towards 0 and 1 

What if we don’t know 
structure?

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!
 (for now still assume can observe all values)

 For each structure, learn parameters
 As just shown…

 Pick the one that fits observed data best
 Calculate P(data)
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Two problems:
• Fully connected graph will be most probable
• Exponential number of structures

…

Enumerate

Learning The Structure
of Bayesian Networks

 Search thru the space… 
 of possible network structures!

 For each structure, learn parameters
 As just shown…j

 Pick the one that fits observed data best
 Calculate P(data)

Two problems:
• Fully connected will be most probable

• Add penalty term (regularization)  model complexity
• Exponential number of structures

• Local search
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Score Functions
 Bayesian Information Criterion (BIC)
 P(D | BN) – penalty

 Penalty = ½ (# parameters) Log (# data points)

 MAP score MAP score
 P(BN | D) = P(D | BN) P(BN)

 P(BN) must decay exponentially with # of 
parameters for this to work well

 Loss(h,data) = error(h, data) + complexity(h)
© Daniel S. Weld
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Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)
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( g )

 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Cotraining

Why Learn Hidden Variables? Chicken & Egg Problem

 If we knew whether patient had disease
 It would be easy to learn CPTs

 But we can’t observe states, so we don’t!
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• If we knew CPTs
– It would be easy to predict if patient had disease

– But we don’t, so we can’t!
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Continuous Variables

Aliens

Pr(A=t)
0.01 hidden
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Earthquake

Pr(E|A)
a  = 6

 = 2
a  = 1

 = 3
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Simplest Version
 Mixture of two distributions

26

 Know: form of distribution & variance,
 =1

 Just need mean of each distribution

.01   .03   .05   .07   .09
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Input Looks Like
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.01     .03     .05     .07     .09

Slide by Daniel S. Weld

We Want to Predict
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.01     .03     .05     .07     .09

?
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Chicken & Egg
Note that coloring instances would be easy 

if we knew Gaussian parameters….
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Chicken & Egg
And finding the Gaussians would be easy

if we knew the coloring
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Expectation Maximization (EM)

 Pretend we do know the parameters

 Initialize randomly: set  1=?;   2=?

31
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Expectation Maximization (EM)
 Pretend we do know the parameters
 Initialize randomly

 [E step] Compute probability of instance having 
each possible value of the hidden variable
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Expectation Maximization (EM)
 Pretend we do know the parameters
 Initialize randomly

 [E step] Compute probability of instance having 
each possible value of the hidden variable
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Expectation Maximization (EM)
 Pretend we do know the parameters
 Initialize randomly

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally
having both values compute the new parameter 
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having both values compute the new parameter 
values
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ML Mean of Single Gaussian

Uml = argminui(xi – u)2
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Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
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having both values compute the new parameter 
values
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Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable

37

.01     .03     .05     .07     .09

Slide by Daniel S. Weld



11/14/2012

7

Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally 
h i  b th l  t  th   t  
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p g y
having both values compute the new parameter 
values
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Expectation Maximization (EM)

 [E step] Compute probability of instance having 
each possible value of the hidden variable

[M step] Treating each instance as fractionally 
h i  b th l  t  th   t  
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p g y
having both values compute the new parameter 
values
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EM

 Works for multiple hidden variables

& other parametric forms
 E.g., Baum-Welch algorithm for HMMs

 Optimality?

 Complexity?

 Search?
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Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)
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 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Cotraining

Ensembles of Classifiers 

 Traditional approach: Use one 
classifier
 Can one do better?

A h
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 Approaches:
• Cross-validated committees
• Bagging
• Boosting
• Stacking

Ensembles of Classifiers
 Assume 
 Errors are independent (suppose 30% error)
 Majority vote

 Probability that majority is wrong…

Prob  0.2

 = area under binomial distribution

© Daniel S. Weld

• If individual area is 0.3
• Area under curve for 11 wrong is 0.026
• Order of magnitude improvement!

0.1

Number of classifiers in error
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Constructing Ensembles

 Partition examples into k disjoint equiv classes
 Now create k training sets
 Each set is union of all equiv classes except one

Cross-validated committees
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 Each set is union of all equiv classes except one
 So each set has (k-1)/k of the original training data

 Now train a classifier on each set

H
ol

do
ut

Ensemble Construction II

 Generate k sets of training examples
 For each set
 Draw m examples randomly (with replacement)

Bagging

© Daniel S. Weld
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Draw m examples randomly (with replacement) 
 From the original set of m examples

 Each training set corresponds to 
 63.2% of original (+ duplicates)

 Now train classifier on each set
 Intuition: Sampling helps algorithm become 

more robust to noise/outliers in the data

47

decision tree learning algorithm; very similar to ID3

48

shades of blue/red indicate strength of vote for particular classification

Boosting
 Idea: run weak learner multiple times on (reweighted!) 

training data; weight learned classifiers  their 
accuracy

 On each iteration t: 
 Learn a hypothesis, ht, using distribution to weight 

examples

[Schapire, 1989]

examples
 Compute a strength for this hypothesis – t

 Reweight training examples by how well they were 
classified

 Final classifier:

 Practically useful
 Theoretically interesting
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Bagging vs Boosting

52Slide from T Dietterich

Ensemble Creation IV
Stacking

 Train several base learners
 Next train meta-learner
 Learns when base learners are right / wrong
 Now meta learner arbitrates

© Daniel S. Weld
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 Train using cross validated committees
• Meta-L inputs = base learner predictions
• Training examples = ‘test set’ from cross validation

Topics

 Learning Parameters for a Bayesian Network
 Fully observable

 Hidden variables (EM algorithm)

© Daniel S. Weld

( g )

 Learning Structure of Bayesian Networks

 Cool Stuff
 Learning Ensembles

 Semi-supervised learning (Cotraining)


