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CSE 573: Artificial Intelligence

Constraint Satisfaction

Daniel Weld

Slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer

Space of Search Strategies

 Blind Search
 DFS, BFS, IDS

 Informed Search
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Informed Search
 Systematic: Uniform cost, greedy, A*, IDA*

 Stochastic: Hill climbing w/ random walk & restarts

 Constraint Satisfaction

 Adversary Search
 Min-max, alpha-beta, expectimax, MDPS…

Recap: Search Problem

 States 
 configurations of the world

 Successor function: 
 function from states to lists of triplesfunction from states to lists of triples

(state, action, cost)

 Start state
 Goal test

Constraint Satisfaction
 Kind of search in which
 States are factored into sets of variables

 Search = assigning values to these variables

 Goal test is encoded with constraints 
  Gives structure to search space
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 Gives structure to search space

 Exploration of one part informs others

 Special techniques add speed
 Propagation

 Variable ordering

 Preprocessing

Constraint Satisfaction Problems

 Subset of search problems

 State is factored - defined by 
 Variables Xi with values from a

 Domain D (often D depends on i)

 Goal test is a set of constraints

WHY STUDY?
 Simple example of a formal representation language
 Allows more powerful search algorithms

Example: Map-Coloring

 Variables:

 Domain:

 Constraints: adjacent regions must have 
different colors

 Solutions are assignments satisfying all 
constraints, e.g.:
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Constraint Graphs
 Binary CSP: each constraint relates (at most) two 

variables
 Binary constraint graph: nodes are variables, arcs 

show constraints

 General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!

Real-World CSPs

 Assignment problems: e.g., who teaches what class
 Timetabling problems: e.g., which class is offered when 

and where?
 Hardware configuration
 Gate assignment in airports Gate assignment in airports
 Transportation scheduling
 Factory scheduling
 Fault diagnosis
 … lots more!

 Many real-world problems involve 
real-valued variables…

Example: Sudoku

 Variables:

 Domains:

 Each (open) square

Domains:

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

 {1,2,…,9}

Example: Cryptarithmetic

 Variables (circles):

 Domains:

 Constraints (boxes):

Crossword Puzzle

 Variables & domains?

 Constraints?
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Example: N-Queens

 CSP Formulation 1:
 Variables:

 Domains:

 Constraints Constraints

Xij + Xik ≤ 1

Xij + Xkj ≤ 1

Xij + Xi+k,j+k ≤ 1

Xij + Xi+k,j-k ≤ 1
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Example: N-Queens

 CSP Formulation 1:
 Variables:

 Domains:

 Constraints Constraints

Example: N-Queens

 Formulation 2:
 Variables:

 Domains:Domains:

 Constraints:

Implicit:

Explicit:

-or-

Chinese Constraint 
Network

Soup

Chicken
DishAppetizer

Must be
Hot&Sour

No 
Peanuts
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Total Cost
< $40

Dish

Vegetable

RiceSeafood

Pork Dish No 
Peanuts

Not
Chow Mein

Not Both
Spicy

Example: The Waltz Algorithm

 The Waltz algorithm is for interpreting line drawings of 
solid polyhedra

 An early example of a computation posed as a CSP 

 Look at all intersections
 Adjacent intersections impose constraints on each other

?

Waltz on Simple Scenes

 Assume all objects:
 Have no shadows or cracks
 Three-faced vertices
 “General position”: no junctions 

change with small movements of 
ththe eye.

 Then each line on image is 
one of the following:
 Boundary line (edge of an 

object) (>) with right hand of 
arrow denoting “solid” and left 
hand denoting “space”

 Interior convex edge (+)
 Interior concave edge (-)

Legal Junctions

 Only certain junctions are 
physically possible

 How can we formulate a CSP to 
label an image?

 Variables: vertices
 Domains: junction labelsDomains: junction labels
 Constraints: both ends of a line 

should have the same label

x

y

(x,y) in

, , …
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Local vs Global Consistency
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Varieties of CSPs

 Discrete Variables
 Finite domains

 Size d means O(dn) complete assignments

 E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

 Infinite domains (integers, strings, etc.)
 E.g., job scheduling, variables are start/end times for each job

 Linear constraints solvable, nonlinear undecidable

 Continuous variables
 E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints
 Varieties of Constraints

 Unary constraints involve a single variable (equiv. to shrinking domains):

 Binary constraints involve pairs of variables:

 Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

 Preferences (soft constraints):
 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We’ll ignore these until we get to Bayes’ nets)

CSPs as Search?

 States?

 Successor function?

 Start state?

 Goal test?

Standard Search Formulation

• States are defined by the values assigned so far

• Initial state: the empty assignment, {}

• Successor function: 
• assign value to an unassigned variable

• Goal test: 
• the current assignment is complete &
• satisfies all constraints

Backtracking Example
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Backtracking Search

 Note 1: Only consider a single variable at each point
 Variable assignments are commutative, so fix ordering of variables

I.e., [WA = red then NT = blue] same as

[NT = blue then WA = red][ ]

 What is branching factor of this search?

Backtracking Search

Note 2: Only allow legal assignments at each point

 I.e. Ignore values which conflict previous assignments

 Might need some computation to eliminate such conflicts

 “Incremental goal test”

“Backtracking Search”

Depth-first search for CSPs with these two ideas

 One variable at a time, fixed order

 Only trying consistent assignments

Is called “Backtracking Search”
 Basic uninformed algorithm for CSPs

 Can solve n-queens for n  25

Backtracking Search

 What are the choice points?

Improving Backtracking

General-purpose ideas give huge gains in speed

 Ordering:
 Which variable should be assigned next?c a ab e s ou d be ass g ed e t

 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

Forward Checking

 Idea: Keep track of remaining legal values for 
unassigned variables (using immediate constraints)

 Idea: Terminate when any variable has no legal values

WA
SA

NT Q

NSW

V
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Forward Checking

Row 1

Row 2

Row 3

QA QB QC QD
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Forward Checking
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Prune inconsistent values
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Forward Checking
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Forward Checking 
Cuts the Search Space

4

16

42

16

64

256

Are We Done?
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Constraint Propagation

 Forward checking propagates information from assigned to adjacent 
unassigned variables, but doesn't detect more distant failures:

WA
SA

NT Q

NSW

V

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

 Simplest form of propagation makes each arc consistent
 X  Y is consistent iff for every value x there is some allowed y

WA
SA

NT Q

NSW

V

• If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• What’s the downside of arc consistency?
• Can be run as a preprocessor or after each assignment 

Arc Consistency

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[demo: arc consistency animation]

Limitations of Arc Consistency

After running arc consistency:
 Can have one solution left

 Can have multiple solutions left

 Can have no solutions left 
(and not know it)

What went 
wrong here?
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K-Consistency*

 Increasing degrees of consistency
 1-Consistency (Node Consistency): 

Each single node’s domain has a value 
which meets that node’s unary 
constraints

 2-Consistency (Arc Consistency): For y ( y)
each pair of nodes, any consistent 
assignment to one can be extended to 
the other

 K-Consistency: For each k nodes, any 
consistent assignment to k-1 can be 
extended to the kth node.

 Higher k more expensive to compute

Variable Ordering Heuristics

 Minimum remaining values (MRV):
 Choose the variable with the fewest legal values

 Why min rather than max?

 Also called “most constrained variable”

 “Fail-fast” ordering

Ordering: Degree Heuristic

 Tie-breaker among MRV variables
 Degree heuristic:
 Choose the variable participating in the most 

constraints on remaining variables

 Why most rather than fewest constraints?

Ordering: Least Constraining Value

 Given a choice of variable:
 Choose the least constraining value
 The one that rules out the fewest 

values in the remaining variables
 Note that it may take some 

computation to determine this!computation to determine this!

 Why least rather than most?

 Combining these heuristics 
makes 1000 queens feasible

Problem Structure
 Tasmania and mainland are 

independent subproblems

 Identifiable as connected 
components of constraint 
graph

 Suppose each subproblemSuppose each subproblem 
has c variables out of n total

 Worst-case solution cost is 
O((n/c)(dc)), linear in n

 E.g., n = 80, d = 2, c =20

 280 = 4 billion years at 10 
million nodes/sec

 (4)(220) = 0.4 seconds at 10 
million nodes/sec

Tree-Structured CSPs

 Choose a variable as root, order
variables from root to leaves such
that every node's parent precedes
it in the ordering 

 For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2)
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Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can 
be solved in O(n d2) time!
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to logical and probabilistic 
reasoning: an important example of the relation between 
syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains

 Cutset conditioning: instantiate (in all ways) a set of variables 
such that the remaining constraint graph is a tree

 Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c

Local Search for CSPs

 Greedy and stochastic methods typically search over 
“complete” states, i.e., all variables assigned

 To apply to CSPs:
 Allow states with unsatisfied constraints

O t i i bl l Operators reassign variable values

 Variable selection: randomly select any conflicted variable

 Value selection heuristic:
 Min-conflicts 
 Choose value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant time 
for large n (e.g., 10,000,000) with high probability 

 The same appears to be true for any randomly-generated CSP except
in a narrow range of the ratio

CSP Summary
 CSPs are a special (factored) kind of search problem:

 States defined by values (domains) of a fixed set of variables

 Goal test defined by constraints on variable values

 Backtracking = DFS - one legal variable assigned per node

 Variable ordering and value selection heuristics help

 Forward checking prevents assignments that fail later Forward checking prevents assignments that fail later

 Constraint propagation (e.g., arc consistency) 
 does additional work to constrain values and detect inconsistencies

 Constraint graph representation
 Allows analysis of problem structure

 Tree-structured CSPs can be solved in linear time

 Local (stochastic) search often effective in practice
 Iterative min-conflicts 


