
Logic in AI
Chapter 7

Dan Weld

(With some slides from Mausam, Stuart
Russell, Dieter Fox, Henry Kautz…)

Knowledge Representation

• represent knowledge in a manner that facilitates inferencing
(i.e. drawing conclusions) from knowledge.

• Typically based on

– Logic

– Probability

– Logic and Probability

Some KR Languages

• Propositional Logic

• Predicate Calculus

• Frame Systems

• Rules with Certainty Factors

• Bayesian Belief Networks

• Influence Diagrams

• Semantic Networks

• Concept Description Languages

• Non-monotonic Logic

 © Daniel S. Weld 3

Basic Idea of Logic

• By starting with true assumptions, you can
deduce true conclusions.

© Daniel S. Weld 4

Truth
•Francis Bacon (1561-1626)
No pleasure is comparable to the
standing upon the vantage-ground
of truth.

•Thomas Henry Huxley (1825-
1895)
Irrationally held truths may be
more harmful than reasoned
errors.

•John Keats (1795-1821)
Beauty is truth, truth beauty; that
is all ye know on earth, and all ye
need to know.

•Blaise Pascal (1623-1662)
We know the truth, not only by
the reason, but also by the heart.

•François Rabelais (c. 1490-1553)
Speak the truth and shame the
Devil.

•Daniel Webster (1782-1852)
There is nothing so powerful as
truth, and often nothing so
strange.

© Daniel S. Weld 5

Components of KR

• Syntax: defines the sentences in the language

• Semantics: defines the “meaning” of sentences

• Inference Procedure

– Algorithm

– Sound?

– Complete?

– Complexity

• Knowledge Base

© Daniel S. Weld 6

© D. Weld, D. Fox 7

Knowledge bases

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system):
– Tell it what it needs to know

• Then it can Ask itself what to do - answers should follow from the KB

• Agents can be viewed at the knowledge level

i.e., what they know, regardless of how implemented

• Or at the implementation level
i.e., data structures in KB and algorithms that manipulate them

Propositional Logic
• Syntax

– Atomic sentences: P, Q, …

– Connectives:  , , , 
• Semantics

– Truth Tables

• Inference
– Modus Ponens
– Resolution
– DPLL
– GSAT

• Complexity

© Daniel S. Weld 8

Propositional Logic: Syntax

• Atoms
–P, Q, R, …

• Literals
–P, P

• Sentences
–Any literal is a sentence
– If S is a sentence

• Then (S  S) is a sentence
• Then (S  S) is a sentence

• Conveniences
P  Q same as P  Q

© Daniel S. Weld 9

Semantics
• Syntax: which arrangements of symbols are legal

– (Def “sentences”)

• Semantics: what the symbols mean in the world

– (Mapping between symbols and worlds)

© Daniel S. Weld 10

Sentences

Facts Facts

Sentences

Representation

World

S
em

a
n
tics

S
em

a
n

tics

Inference

Propositional Logic: SEMANTICS

• “Interpretation” (or “possible world”)

– Assignment to each variable either T or F

– Assignment of T or F to each connective via defns

© Daniel S. Weld 11

P
T

T

F

F

Q

P
T

T

F

F

Q

P  Q P  Q

T

F F

F

F

T T

T

Satisfiability, Validity, & Entailment

• S is satisfiable if it is true in some world

• S is unsatisfiable if it is false all worlds

• S is valid if it is true in all worlds

• S1 entails S2 if wherever S1 is true S2 is also true

© Daniel S. Weld 12

Examples

R  R

S  (W  S)

T  T

X  X

© Daniel S. Weld 13

P  Q

Notation

• Sound

• Complete
 = implies 

© Daniel S. Weld 14









=

Inference
Entailment

}
Proves: S1 |-i S2 if inference algo, i, says `S2’ from S1

Entails: S1 |= S2 if wherever S1 is true S2 is also true

  =

=  

Implication (syntactic symbol)

Prop. Logic: Knowledge Engr

1. Choose Vocabulary

© Daniel S. Weld 15

1) One of the women is a biology major
2) Lisa is not next to Dave in the ranking
3) Dave is immediately ahead of Jim
4) Jim is immediately ahead of a bio major
5) Mary or Lisa is ranked first

Universe: Lisa, Dave, Jim, Mary
LD = “Lisa is immediately ahead of Dave”
D = “Dave is a Bio Major”

2. Choose initial sentences (wffs)

Reasoning Tasks
• Model finding

KB = background knowledge

S = description of problem

Show (KB  S) is satisfiable

A kind of constraint satisfaction

• Deduction

S = question

Prove that KB |= S

Two approaches:

© Daniel S. Weld 16

• Rules to derive new formulas from old (inference)

• Show (KB   S) is unsatisfiable

Special Syntactic Forms
• General Form:

((q r)  s))   (s  t)

• Conjunction Normal Form (CNF)

( q  r  s)  ( s   t)

Set notation: { ( q, r, s), ( s,  t) }

empty clause () = false

• Binary clauses: 1 or 2 literals per clause

( q  r) ( s   t)

• Horn clauses: 0 or 1 positive literal per clause

( q   r  s) ( s   t)

(qr)  s (st)  false
© Daniel S. Weld 17

Propositional Logic: Inference

 A mechanical process for computing new sentences

1. Backward & Forward Chaining

2. Resolution (Proof by Contradiction)

3. GSAT

4. Davis Putnam

© Daniel S. Weld 18

Inference 1: Forward Chaining

Forward Chaining
 Based on rule of modus ponens

If know P1, …, Pn & know (P1 ...  Pn)  Q

Then can conclude Q

Backward Chaining: search

 start from the query and go backwards

© Daniel S. Weld 19

Analysis

• Sound?

• Complete?

• If KB has only Horn clauses & query is a single literal

– Forward Chaining is complete

– Runs linear in the size of the KB

© Daniel S. Weld 20

Can you prove
 { } |= Q  Q

Example

2

2

2

1

2

Example

1

2

2

1

1

Example

1

1

2

1

0

Example

1

1

2

1

0

Example

1

0

1

1

0

Example

1

0

1

1

0

Example

1

0

0

1

0

Example

0

0

0

0

0

Example

0

0

0

0

0

Propositional Logic: Inference
 A mechanical process for computing new sentences

1. Backward & Forward Chaining

2. Resolution (Proof by Contradiction)

3. GSAT

4. Davis Putnam

© Daniel S. Weld 30

Conversion to CNF

Inference 2: Resolution
[Robinson 1965]

 { (p  ), ( p    ) } |-R (    )

© Daniel S. Weld 32

Correctness

 If S1 |-R S2 then S1 |= S2
Refutation Completeness:

 If S is unsatisfiable then S |-R ()

Resolution

© Daniel S. Weld 33

If the unicorn is mythical, then it is immortal, but if

it is not mythical, it is a mammal. If the unicorn is
either immortal or a mammal, then it is horned.

Prove: the unicorn is horned.

( A  H)

(M  A)

( H) (I  H)

( M)

( M  I) (I) (A)

(M)

()

M = mythical
I = immortal
A = mammal
H = horned

Resolution as Search

• States?

• Operators

© Daniel S. Weld 34

Model Finding

• Find assignments to variables that makes a
formula true

• a CSP

Inference 3: Model Enumeration

 for (m in truth assignments){

 if (m makes  true)

 then return “Sat!”

 }

 return “Unsat!”

© Daniel S. Weld 36

Inference 4: DPLL
(Enumeration of Partial Models)
[Davis, Putnam, Loveland & Logemann 1962]

Version 1

dpll_1(pa){

 if (pa makes F false) return false;

 if (pa makes F true) return true;

 choose P in F;

 if (dpll_1(pa  {P=0})) return true;

 return dpll_1(pa  {P=1});

}

Returns true if F is satisfiable, false otherwise

© Daniel S. Weld 37

DPLL Version 1

© Daniel S. Weld 38

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL Version 1

© Daniel S. Weld 39

a

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

F

DPLL Version 1

© Daniel S. Weld 40

a

(F  b  c)

(F  ¬b)

(F  ¬c)

(T  c)

F

DPLL Version 1

© Daniel S. Weld 41

a

(F  F  c)

(F  T)

(F  ¬c)

(T  c)

F

b

DPLL Version 1

© Daniel S. Weld 42

a

(F  F  F)

(F  T)

(F  T)

(T  F)

F

b

c

DPLL Version 1

© Daniel S. Weld 43

a

F

T

T

T

F

b

c

DPLL Version 1

© Daniel S. Weld 44

a

b

c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL Version 1

© Daniel S. Weld 45

a

b b

c
c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL as Search

• Search Space?

• Algorithm?

© Daniel S. Weld 46

Improving DPLL

© Daniel S. Weld 47

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true

If clause is true, then ... has the

T herefore: O kay to delete clauses containing

 s

tr

am e

value as ...

If lit

ue lit

eral is

erals!

L L L

C C C C

C C

L

 

  

 

1 2 3

2 3

1 1

T herefore: O kay to delete shorten containing false liter

false, then clause (...) has

the sam e value as (...)

If literal is false, then clause () is fals

als!

T herefore: th

e

e em pty clau

L L L

L L

L L

  

 

se m eans false!

Improving DPLL

© Daniel S. Weld 48

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true

If clause is true, then ... has the

T herefore: O kay to delete clauses containing

 s

tr

am e

value as ...

If lit

ue lit

eral is

erals!

L L L

C C C C

C C

L

 

  

 

1 2 3

2 3

1 1

T herefore: O kay to delete shorten containing false liter

false, then clause (...) has

the sam e value as (...)

If literal is false, then clause () is fals

als!

T herefore: th

e

e em pty clau

L L L

L L

L L

  

 

se m eans false!

Improving DPLL

© Daniel S. Weld 49

1 1 2

1 1 2 3

2 3

1

If literal is true, then clause (...) is true

If clause is true, then ... has the

T herefore: O kay to delete clauses containing

 s

tr

am e

value as ...

If lit

ue lit

eral is

erals!

L L L

C C C C

C C

L

 

  

 

1 2 3

2 3

1 1

T herefore: O kay to delete shorten containing false liter

false, then clause (...) has

the sam e value as (...)

If literal is false, then clause () is fals

als!

T herefore: th

e

e em pty clau

L L L

L L

L L

  

 

se m eans false!

DPLL version 2

dpll_2(F, literal){

 remove clauses containing literal

 if (F contains no clauses)return true;

 shorten clauses containing literal

 if (F contains empty clause)
 return false;

 choose V in F;

 if (dpll_2(F, V))return true;

 return dpll_2(F, V);

}

Partial assignment corresponding to a node is the set of chosen
literals on the path from the root to the node

© Daniel S. Weld 50

DPLL Version 2

© Daniel S. Weld 51

a

(F  b  c)

(F  ¬b)

(F  ¬c)

(T  c)

F

DPLL Version 2

© Daniel S. Weld 52

a

(b  c)

(¬b)

(¬c)

DPLL Version 2

© Daniel S. Weld 53

a

(F  c)

(T)

(¬c)

b

DPLL Version 2

© Daniel S. Weld 54

a

(c)

(¬c)

b

DPLL Version 2

© Daniel S. Weld 55

a

(F)

(T)

b

c

DPLL Version 2

© Daniel S. Weld 56

a

()

b

c

DPLL Version 2

© Daniel S. Weld 57

a

(F  F  F)

(F  T)

(F  T)

(T  F)

F

b

c

DPLL Version 2

© Daniel S. Weld 58

a

F

T

T

T

F

b

c

DPLL Version 2

© Daniel S. Weld 59

a

b

c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

Benefit

• Can backtrack before getting to leaf

© Daniel S. Weld 60

Structure in Clauses

• Pure Literals

– A symbol that always appears with same sign

– {{a b c} {c d e} {a b e}{d b} {e a c}}

© Daniel S. Weld 61

• Unit Literals
 A literal that appears in a singleton clause
 {{b c}{c}{a b e}{d b}{e a c}}

 Might as well set it true! And simplify
 {{a b c} {a b e} {e a c}}

 Might as well set it true! And simplify
 {{b} {a b e}{d b}}

 {{d}}

In Other Words

© Daniel S. Weld 62

2 3

T herefore: Branch im m ediately on unit litera

Form ula () ... is only true w hen literal is true

If literal does not appear negated in form ula , then setting

 true preserves satisfiability o

ls!

L C C L

L F

L

  

T herefore: Branch im m ediately on pure liter

f

als!

F

May view this as adding
constraint propagation
techniques into play

In Other Words

© Daniel S. Weld 63

2 3

T herefore: Branch im m ediately on unit litera

Form ula () ... is only true w hen literal is true

If literal does not appear negated in form ula , then setting

 true preserves satisfiability o

ls!

L C C L

L F

L

  

T herefore: Branch im m ediately on pure liter

f

als!

F

May view this as adding
constraint propagation
techniques into play

DPLL (previous version)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

 remove clauses containing literal

 if (F contains no clauses) return true;

 shorten clauses containing literal
if (F contains empty clause)
 return false;

 if (F contains a unit or pure L)
 return dpll(F, L);

 choose V in F;

 if (dpll(F, V))return true;

 return dpll(F, V);

}

© Daniel S. Weld 64

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

 remove clauses containing literal

 if (F contains no clauses) return true;

 shorten clauses containing literal
if (F contains empty clause)
 return false;

 if (F contains a unit or pure L)
 return dpll(F, L);

 choose V in F;

 if (dpll(F, V))return true;

 return dpll(F, V);

}

© Daniel S. Weld 65

DPLL (for real)

© Daniel S. Weld 66

a

b c

c

(a  b  c)

(a  ¬b)

(a  ¬c)

(¬a  c)

DPLL (for real!)
Davis – Putnam – Loveland – Logemann

dpll(F, literal){

 remove clauses containing literal

 if (F contains no clauses) return true;

 shorten clauses containing literal
if (F contains empty clause)
 return false;

 if (F contains a unit or pure L)
 return dpll(F, L);

 choose V in F;

 if (dpll(F, V))return true;

 return dpll(F, V);

}

© Daniel S. Weld 67

Heuristic Search in DPLL

• Heuristics are used in DPLL to select a (non-
unit, non-pure) proposition for branching

• Idea: identify a most constrained variable

– Likely to create many unit clauses

• MOM’s heuristic:

– Most occurrences in clauses of minimum length

© Daniel S. Weld 68

Success of DPLL

• 1962 – DPLL invented

• 1992 – 300 propositions

• 1997 – 600 propositions (satz)

• Additional techniques:

– Learning conflict clauses at backtrack points

– Randomized restarts

– 2002 (zChaff) 1,000,000 propositions – encodings
of hardware verification problems

© Daniel S. Weld 69

WalkSat (Take 1)

• Local search (Hill Climbing + Random Walk) over
space of complete truth assignments

–With prob p: flip any variable in any unsatisfied clause

–With prob (1-p): flip best variable in any unsat clause

• best = one which minimizes #unsatisfied clauses

• SAT encodings of N-Queens, scheduling

• Best algorithm for random K-SAT

–Best DPLL: 700 variables

–Walksat: 100,000 variables

 © Daniel S. Weld 70

Refining Greedy Random Walk

• Each flip

– makes some false clauses become true

– breaks some true clauses, that become false

• Suppose s1s2 by flipping x. Then:

 #unsat(s2) = #unsat(s1) – make(s1,x) + break(s1,x)

• Idea 1: if a choice breaks nothing, it is very likely to
be a good move

• Idea 2: near the solution, only the break count
matters

– the make count is usually 1

Walksat (Take 2)
state = random truth assignment;
while ! GoalTest(state) do

clause := random member { C | C is false in state };
for each x in clause do compute break[x];
if exists x with break[x]=0 then var := x;
else
 with probability p do
 var := random member { x | x is in clause };
 else
 var := arg x min { break[x] | x is in clause };
endif
state[var] := 1 – state[var];

end
return state; Put everything inside of a restart loop.

Parameters: p, max_flips, max_runs

Random 3-SAT

• Random 3-SAT

– sample uniformly from
space of all possible 3-
clauses

– n variables, l clauses

• Which are the hard
instances?

– around l/n = 4.3

© Daniel S. Weld
73

Random 3-SAT

• Varying problem size, n

• Complexity peak appears
to be largely invariant of
algorithm

– backtracking algorithms like
Davis-Putnam

– local search procedures like
GSAT

• What’s so special about
4.3?

© Daniel S. Weld
74

Random 3-SAT

• Complexity peak coincides
with solubility transition

– l/n < 4.3 problems under-
constrained and SAT

– l/n > 4.3 problems over-
constrained and UNSAT

– l/n=4.3, problems on “knife-
edge” between SAT and
UNSAT

© Daniel S. Weld
75

