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(Based on slides by UW-AI faculty) 



Knowledge Representation 

KR Language Ontological Commitment Epistemological Commitment 

Propositional Logic facts true, false, unknown 

First Order Logic facts, objects, relations true, false, unknown 

Temporal Logic facts, objects, relations, times true, false, unknown 

Probability Theory facts degree of belief 

Fuzzy Logic facts, degree of truth known interval values 

Probabilistic Relational Models 
- combine probability and first order logic 



Need for Reasoning w/ Uncertainty 

• The world is full of uncertainty 
– chance nodes/sensor noise/actuator error/partial info.. 

– Logic is brittle 
• can’t encode exceptions to rules 

• can‘t encode statistical properties in a domain 

– Computers need to be able to handle uncertainty 

• Probability: new foundation for AI (& CS!) 
 

• Massive amounts of data around today 
– Statistics and CS are both about data 

– Statistics lets us summarize and understand it 

– Statistics is the basis for most learning 

• Statistics lets data do our work for us 
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Logic     vs.     Probability 
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Symbol: Q, R … Random variable: Q … 

Boolean values: T, F Domain: you specify 
e.g. {heads, tails} [1, 6] 

State of the world:  
Assignment to Q, R … Z 

Atomic event: complete 
specification of world: Q… Z 
• Mutually exclusive 
• Exhaustive 

Prior probability (aka 
Unconditional prob: P(Q) 

Joint distribution: Prob. 
of every atomic event 



Probability Basics 

• Begin with a set S: the sample space 

– e.g., 6 possible rolls of a die. 

• x ϵ S is a sample point/possible world/atomic event 

• A probability space or probability model is a sample 
space with an assignment P(x) for every x s.t. 
0≤P(x)≤1 and ∑P(x) = 1 

• An event A is any subset of S 

– e.g. A= ‘die roll < 4’ 

• A random variable is a function from sample points 
to some range, e.g., the reals or Booleans 



Types of Probability Spaces 

•© UW CSE AI Faculty •6 



Axioms of Probability Theory 

• All probabilities between 0 and 1 

– 0 ≤ P(A) ≤ 1 

– P(true) = 1         

– P(false) = 0. 

• The probability of  disjunction is: 
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Prior Probability 
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Joint distribution can answer any question 



Conditional probability 
• Conditional or posterior probabilities 

e.g., P(cavity | toothache) = 0.8 
i.e., given that toothache is all I know there is 80% chance of cavity 
 

 

• Notation for conditional distributions: 
P(Cavity | Toothache) = 2-element vector of 2-element vectors) 
 
 

• If we know more, e.g., cavity is also given, then we have 
P(cavity |  toothache, cavity) = 1 

 
• New evidence may be irrelevant, allowing simplification: 

P(cavity |  toothache, sunny) = P(cavity | toothache) = 0.8 
 

• This kind of inference, sanctioned by domain knowledge, is crucial 
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Conditional Probability  

• P(A | B) is the probability of A given B 

• Assumes that B is the only info known. 

• Defined by: 
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Chain Rule/Product Rule 

• P(X1, …, Xn) = P(Xn|X1..Xn-1)P(Xn-1|X1..Xn-2)… P(X1) 

        = ПP(Xi|X1,..Xi-1) 



Dilemma at the Dentist’s 
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What is the probability of a cavity given a toothache? 
What is the probability of a cavity given the probe catches? 
 



Inference by Enumeration 
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P(toothache)=.108+.012+.016+.064 
                    = .20  or 20% 



Inference by Enumeration 
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P(toothachecavity) =  .20 + ?? .072 + .008 

.28 



Inference by Enumeration 
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Complexity of Enumeration 

• Worst case time: O(dn) 

– Where d = max arity 

– And n = number of random variables 

• Space complexity also O(dn)   

– Size of joint distribution 

 

• Prohibitive! 
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Independence 

• A and B are independent iff: 
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These two constraints are  
logically equivalent 

• Therefore, if A and B are independent: 



Independence 
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Complete independence is powerful but rare 
What to do if it doesn’t hold? 



Conditional Independence 
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Instead of 7 entries, only need 5 



Conditional Independence II 
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P(catch | toothache,  cavity) = P(catch |  cavity) 
P(catch | toothache,cavity) = P(catch |cavity) 

Why only 5 entries in table? 



Power of Cond. Independence 

• Often, using conditional independence 
reduces the storage complexity of the joint 
distribution from exponential to linear!! 

 

• Conditional independence is the most basic & 
robust form of knowledge about uncertain 
environments. 
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Bayes Rule 
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E.g. let M be meningitis, S be stiff neck 
 P(M) = 0.0001,  
 P(S) = 0.1,  
 P(S|M)= 0.8 
 

P(M|S)  

Computing Diagnostic Prob. from Causal Prob. 



  
 
 
 

Other forms of Bayes Rule 
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Conditional Bayes Rule 

)|(),|(),(

)|(),|(

),(),|(
),(

)|(

)|(),|(
),(

zxPzxyPzyxP

zxPzxyP

zxPzxyP
zyxP

zyP

zxPzxyP
zyxP

x











Bayes’ Rule & Cond. Independence 
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Simple Example of State Estimation 

• Suppose a robot obtains measurement z 

• What is P(doorOpen|z)? 
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Causal vs. Diagnostic Reasoning 

• P(open|z) is diagnostic. 

• P(z|open) is causal. 

• Often causal knowledge is easier to obtain. 

• Bayes rule allows us to use causal knowledge: 
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Example 
• P(z|open) = 0.6  P(z|open) = 0.3 

• P(open) = P(open) = 0.5 
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• z raises the probability that the door is open. 



Combining Evidence 

• Suppose our robot obtains another observation z2. 

• How can we integrate this new information? 

• More generally, how can we estimate 
P(x| z1...zn )? 
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Recursive Bayesian Updating 
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Example: Second Measurement  

• P(z2|open) = 0.5  P(z2|open) = 0.6 

• P(open|z1)=2/3 
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• z2 lowers the probability that the door is open. 



These calculations seem 
laborious to do for each 
problem domain – 

is there a general 
representation scheme for 
probabilistic inference? 

Yes – Bayesian Networks 


