
Markov Decision Processes
Chapter 17

Mausam

Planning Agent

What action

next?

Percepts Actions

Environment

Static vs. Dynamic

Fully

vs.

 Partially

Observable

Perfect

vs.

Noisy

Deterministic
vs.

 Stochastic

Instantaneous
vs.

 Durative

Classical Planning

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Instantaneous

Deterministic

Stochastic Planning: MDPs

What action

next?

Percepts Actions

Environment

Static

Fully

Observable

Perfect

Stochastic

Instantaneous

MDP vs. Decision Theory

• Decision theory – episodic

• MDP -- sequential

Markov Decision Process (MDP)

• S: A set of states

• A: A set of actions

• Pr(s’|s,a): transition model

• C(s,a,s’): cost model

• G: set of goals

• s0: start state

• : discount factor

• R(s,a,s’): reward model

factored
Factored MDP

absorbing/

non-absorbing

Objective of an MDP

• Find a policy : S → A

• which optimizes

• minimizes expected cost to reach a goal

• maximizes expected reward

• maximizes expected (reward-cost)

• given a ____ horizon

• finite

• infinite

• indefinite

• assuming full observability

discounted

or

undiscount.

Role of Discount Factor ()

• Keep the total reward/total cost finite

• useful for infinite horizon problems

• Intuition (economics):

• Money today is worth more than money tomorrow.

• Total reward: r1 + r2 + 2r3 + …

• Total cost: c1 + c2 + 2c3 + …

Examples of MDPs

• Goal-directed, Indefinite Horizon, Cost Minimization MDP

• <S, A, Pr, C, G, s0>

• Most often studied in planning, graph theory communities

• Infinite Horizon, Discounted Reward Maximization MDP

• <S, A, Pr, R, >

• Most often studied in machine learning, economics, operations
research communities

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP

• <S, A, Pr, G, R, s0>

• Relatively recent model

most popular

AND/OR Acyclic Graphs vs. MDPs

P

R Q S T

G

P

R S T

G

a b
a b

c c c c c c c

0.6 0.4 0.5 0.5 0.6 0.4 0.5 0.5

C(a) = 5, C(b) = 10, C(c) =1

Expectimin works

• V(Q/R/S/T) = 1

• V(P) = 6 – action a

Expectimin doesn’t work

•infinite loop

• V(R/S/T) = 1

• Q(P,b) = 11

• Q(P,a) = ????

• suppose I decide to take a in P

• Q(P,a) = 5+ 0.4*1 + 0.6Q(P,a)

•  = 13.5

Bellman Equations for MDP1

• <S, A, Pr, C, G, s0>

• Define J*(s) {optimal cost} as the minimum

expected cost to reach a goal from this state.

• J* should satisfy the following equation:

Bellman Equations for MDP2

• <S, A, Pr, R, s0, >

• Define V*(s) {optimal value} as the maximum

expected discounted reward from this state.

• V* should satisfy the following equation:

Bellman Backup (MDP2)

• Given an estimate of V* function (say Vn)

• Backup Vn function at state s

• calculate a new estimate (Vn+1) :

• Qn+1(s,a) : value/cost of the strategy:

• execute action a in s, execute n subsequently

• n = argmaxa∈Ap(s)Qn(s,a)

V

R V 

ax

Bellman Backup

V0= 0

V0= 1

V0= 2

Q1(s,a1) = 2 + 0 
Q1(s,a2) = 5 +  0.9£ 1

 +  0.1£ 2

Q1(s,a3) = 4.5 + 2 

max

V1= 6.5

(~1)

agreedy = a3

5
a2

a1

a3

s0

s1

s2

s3

Value iteration [Bellman’57]

• assign an arbitrary assignment of V0 to each state.

• repeat

• for all states s

• compute Vn+1(s) by Bellman backup at s.

• until maxs |Vn+1(s) – Vn(s)| < 

Iteration n+1

Residual(s)

-convergence

Comments

• Decision-theoretic Algorithm

• Dynamic Programming

• Fixed Point Computation

• Probabilistic version of Bellman-Ford Algorithm
• for shortest path computation

• MDP1 : Stochastic Shortest Path Problem

 Time Complexity

• one iteration: O(|S|2|A|)

• number of iterations: poly(|S|, |A|, 1/(1-))

 Space Complexity: O(|S|)

 Factored MDPs = Planning under uncertainty

• exponential space, exponential time

Convergence Properties

• Vn → V* in the limit as n→1

• -convergence: Vn function is within  of V*

• Optimality: current policy is within 2/(1-) of optimal

• Monotonicity
• V0 ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below)

• V0 ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above)

• otherwise Vn non-monotonic

Policy Computation

Optimal policy is stationary and time-independent.

• for infinite/indefinite horizon problems

Policy Evaluation

A system of linear equations in |S| variables.

ax

ax R V 

R V  V

Changing the Search Space

• Value Iteration

• Search in value space

• Compute the resulting policy

• Policy Iteration

• Search in policy space

• Compute the resulting value

Policy iteration [Howard’60]

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1: the evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• searching in a finite (policy) space as opposed to

uncountably infinite (value) space ⇒ convergence faster.

• all other properties follow!

costly: O(n3)

approximate

by value iteration

using fixed policy

Modified

Policy Iteration

Modified Policy iteration

• assign an arbitrary assignment of 0 to each state.

• repeat

• Policy Evaluation: compute Vn+1 the approx. evaluation of n

• Policy Improvement: for all states s

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)

• until n+1 = n

Advantage

• probably the most competitive synchronous dynamic

programming algorithm.

Applications

 Stochastic Games

 Robotics: navigation, helicopter manuevers…

 Finance: options, investments

 Communication Networks

 Medicine: Radiation planning for cancer

 Controlling workflows

 Optimize bidding decisions in auctions

 Traffic flow optimization

 Aircraft queueing for landing; airline meal provisioning

 Optimizing software on mobiles

 Forest firefighting

 …

Extensions

 Heuristic Search + Dynamic Programming

• AO*, LAO*, RTDP, …

 Factored MDPs

• add planning graph style heuristics

• use goal regression to generalize better

 Hierarchical MDPs

• hierarchy of sub-tasks, actions to scale better

 Reinforcement Learning

• learning the probability and rewards

• acting while learning – connections to psychology

 Partially Observable Markov Decision Processes

• noisy sensors; partially observable environment

• popular in robotics

Asynchronous Value Iteration

 States may be backed up in any order

• instead of an iteration by iteration

 As long as all states backed up infinitely often

• Asynchronous Value Iteration converges to optimal

