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MDP vs. Decision Theory 

• Decision theory – episodic 

 

• MDP -- sequential 



Markov Decision Process (MDP) 

•  S: A set of states 

•  A: A set of actions 

•  Pr(s’|s,a): transition model 

•  C(s,a,s’): cost model 

•  G: set of goals 

• s0: start state 

• : discount factor 

• R(s,a,s’): reward model 

factored 
Factored MDP 

absorbing/ 

non-absorbing 



Objective of an MDP 

• Find a policy : S → A 
 

• which optimizes  

• minimizes      expected cost to reach a goal 

• maximizes      expected reward 

• maximizes               expected (reward-cost) 
 

• given a ____ horizon 

• finite 

• infinite 

• indefinite 
 

• assuming full observability 

discounted 

or 

undiscount. 



Role of Discount Factor () 

• Keep the total reward/total cost finite 

• useful for infinite horizon problems 

 

• Intuition (economics):  

• Money today is worth more than money tomorrow. 

 

• Total reward: r1 + r2 + 2r3 + … 

• Total cost: c1 + c2 + 2c3 + … 



Examples of MDPs 

• Goal-directed, Indefinite Horizon, Cost Minimization MDP 

• <S, A, Pr, C, G, s0> 

• Most often studied in planning, graph theory communities 

 

• Infinite Horizon, Discounted Reward Maximization MDP 

• <S, A, Pr, R, > 

• Most often studied in machine learning, economics, operations 
research communities 

 

• Oversubscription Planning: Non absorbing goals, Reward Max. MDP 

• <S, A, Pr, G, R, s0> 

• Relatively recent model 

most popular 



AND/OR Acyclic Graphs vs. MDPs 
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Expectimin works 

• V(Q/R/S/T) = 1 

• V(P) = 6 – action a 

Expectimin doesn’t work 

•infinite loop 

• V(R/S/T) = 1 

• Q(P,b) = 11 

• Q(P,a) = ???? 

• suppose I decide to take a in P 

• Q(P,a) = 5+ 0.4*1 + 0.6Q(P,a) 

•        = 13.5 



Bellman Equations for MDP1 

• <S, A, Pr, C, G, s0> 

• Define J*(s) {optimal cost} as the minimum 

expected cost to reach a goal from this state. 

• J* should satisfy the following equation: 

  



Bellman Equations for MDP2 

• <S, A, Pr, R, s0, > 

• Define V*(s) {optimal value} as the maximum 

expected discounted reward from this state. 

• V* should satisfy the following equation: 

  



Bellman Backup (MDP2) 

• Given an estimate of V* function (say Vn) 

• Backup Vn function at state s  

• calculate a new estimate (Vn+1) : 

 

 

 

 

 

• Qn+1(s,a) : value/cost of the strategy: 

• execute action a in s, execute n subsequently 

•  n = argmaxa∈Ap(s)Qn(s,a) 
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Value iteration [Bellman’57] 

• assign an arbitrary assignment of V0 to each state. 

 

• repeat 

• for all states s 

• compute Vn+1(s) by Bellman backup at s. 

• until maxs |Vn+1(s) – Vn(s)| <  

Iteration n+1 

Residual(s) 

-convergence 



Comments 

• Decision-theoretic Algorithm 

• Dynamic Programming  

• Fixed Point Computation 

• Probabilistic version of Bellman-Ford Algorithm 
• for shortest path computation 

• MDP1 : Stochastic Shortest Path Problem 

 

 Time Complexity 

• one iteration: O(|S|2|A|)  

• number of iterations: poly(|S|, |A|, 1/(1-))  

 Space Complexity: O(|S|) 

 Factored MDPs = Planning under uncertainty 

• exponential space, exponential time 



Convergence Properties 

 
• Vn → V* in the limit as n→1 

•  -convergence: Vn function is within  of V* 

• Optimality: current policy is within 2/(1-)  of optimal 

 

• Monotonicity 
• V0 ≤p V* ⇒ Vn ≤p V* (Vn monotonic from below) 

• V0 ≥p V* ⇒ Vn ≥p V* (Vn monotonic from above) 

• otherwise Vn non-monotonic 

 



Policy Computation 

Optimal policy is stationary and time-independent. 

• for infinite/indefinite horizon problems 

Policy Evaluation 

A system of linear equations in |S| variables. 

ax 

ax R V  

R V  V 



Changing the Search Space 

• Value Iteration 

• Search in value space 

• Compute the resulting policy 

 

• Policy Iteration 

• Search in policy space 

• Compute the resulting value 



Policy iteration [Howard’60] 

• assign an arbitrary assignment of 0 to each state. 

 

• repeat 

• Policy Evaluation: compute Vn+1: the evaluation of n 

• Policy Improvement: for all states s 

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)  

• until n+1 = n 

Advantage 

• searching in a finite (policy) space as opposed to 

uncountably infinite (value) space ⇒ convergence faster. 

• all other properties follow! 

costly: O(n3) 

approximate 

by value iteration 

using fixed policy 

Modified  

Policy Iteration 



Modified Policy iteration 

• assign an arbitrary assignment of 0 to each state. 

 

• repeat 

• Policy Evaluation: compute Vn+1 the approx. evaluation of n 

• Policy Improvement: for all states s 

• compute n+1(s): argmaxa2 Ap(s)Qn+1(s,a)  

• until n+1 = n 

Advantage 

• probably the most competitive synchronous dynamic 

programming algorithm. 



Applications 

 Stochastic Games 

 Robotics: navigation, helicopter manuevers… 

 Finance: options, investments 

 Communication Networks 

 Medicine: Radiation planning for cancer 

 Controlling workflows 

 Optimize bidding decisions in auctions 

 Traffic flow optimization 

 Aircraft queueing for landing; airline meal provisioning 

 Optimizing software on mobiles 

 Forest firefighting 

 … 



Extensions 

 Heuristic Search + Dynamic Programming 

• AO*, LAO*, RTDP, … 
 

 Factored MDPs 

• add planning graph style heuristics 

• use goal regression to generalize better 
 

 Hierarchical MDPs 

• hierarchy of sub-tasks, actions to scale better 
 

 Reinforcement Learning 

• learning the probability and rewards 

• acting while learning – connections to psychology 
 

 Partially Observable Markov Decision Processes 

• noisy sensors; partially observable environment 

• popular in robotics 



Asynchronous Value Iteration 

 States may be backed up in any order 

• instead of an iteration by iteration 

 As long as all states backed up infinitely often 

• Asynchronous Value Iteration converges to optimal 

 

 


