Markov Decision Processes
Chapter 17

Mausam

Planning Agent

Fully
VS.
Partially
Observable

Perfect
VS.
Noisy

Percepts R

Static vs. Dynamic

What action

Actions

Deterministic
VS.
Stochastic

Instantaneous
VS.
Durative

Classical Planning

Fully
Observable

Perfect

Static

What action

Percepts R

Actions

Deterministic

Instantaneous

Stochastic Planning: MDPs
Static

Fully
Observable

Perfect

What action

Percepts R

Actions

Stochastic

Instantaneous

MDP vs. Decision Theory
* Decision theory - episodic

« MDP -- sequential

Decision Process (MDP)
factored
/@\Set of states D Factored MDP
set of action

Pr(s’|s,a\transition model
. absorbing/

G: setof goals > non-absorbing

* S, start state

* y: discount factor

KR(s,a,s’): reward model/

Objective of an MDP

 Findapolicyn:S— A

* which optimizes
* minimizes (discounted) €Xpected cost to reach a goal
* maximizes or expected reward
« maximizes undiscount,) expected (reward-cost)

« givena____ horizon
* finite
 infinite
* indefinite

« assuming full observability

Role of Discount Factor (y)

Keep the total reward/total cost finite
« useful for infinite horizon problems

* Intuition (economics):
 Money today is worth more than money tomorrow.

- 2
Total reward: ry +yr, + yer; + ...
Total cost: ¢ + yc, + y2C5 + ..

Examples of MDPs

* Goal-directed, Indefinite Horizon, Cost Minimization MDP
¢ <S! A! Pr, c’ g’ SO>
* Most often studied in planning, graph theory communities

=_Infinite Horizon, Discounted Reward Maximization MDP>*—~—_
* <5 A PR, most popular

* Most often studied in machine learning, economics, operations
research communities

« Oversubscription Planning: Non absorbing goals, Reward Max. MDP
¢ <S7 A7 Prs g! R! SO>
« Relatively recent model

AND/OR Acyclic Graphs vs. MDPs

C(a) =5, C(b) =10, C(c) =1 Expectimin doesn’t work
*infinite loop
Expectimin works *V(R/ISIT) =1
*V(Q/R/SIT) =1 *Q(Pb) =11
*V(P) =6 —actiona * Q(P,a) = 7777

* suppose | decide to take a in P
* Q(P,a) =5+ 0.4*1 + 0.6Q(P,a)
e=>» =135

Bellman Equations for MDP,

° <S! A! Pr, c! g! SO>

* Define J*(s) {optimal cost} as the minimum
expected cost to reach a goal from this state.

« J* should satisfy the following equation:

Bellman Equations for MDP,

* <S! A! Pr, R! SO, Y>

» Define V*(s) {optimal value} as the maximum
expected discounted reward from this state.

« V* should satisfy the following equation:

Bellman Backup (MDP,)

» Given an estimate of V* function (say V)

« Backup V, function at state s
* calculate a new estimate (V1) :

Z Pr(s'|s,a) ER,(S, a,s’) 4y, (s")

s'eS

a
aEr?lp()FS) [Qn—l—l (87 CL)]

* Q,,4(s,a) : value/cost of the strategy:
« execute action a in s, execute i, subsequently
* Ty = argmaXaEAp(s)Qn(S,a)

Bellman Backup

max Qq(s,a;)=2+0y

Q(s,a,) =5+y0.9x 1
+v0.1x 2

Q,(s,a3)=4.5+2y

Value iteration [Bellman’57]

 assign an arbitrary assignment of V, to each state.

* repeat
for all states s
ompute V

 until max{V,.(s) - V(s

Iteration n+1

Residual(s)

e-convergence

Comments

* Decision-theoretic Algorithm
* Dynamic Programming
* Fixed Point Computation

* Probabilistic version of Bellman-Ford Algorithm
» for shortest path computation
« MDP, : Stochastic Shortest Path Problem

= Time Complexity
« one iteration: O(|S|?|.A|)
« number of iterations: poly(|S|, |A|, 1/(1-y))

= Space Complexity: O(|S])

= Factored MDPs = Planning under uncertainty
* exponential space, exponential time

Convergence Properties

V, — V*in the limit as h—oo
g-convergence: V,_ function is within g of V*
Optimality: current policy is within 2ey/(1—y) of optimal

Monotonicity
* ViV =2V, < VE (V, monotonic from below)
* Vo> V' =2V, > V* (V, monotonic from above)
« otherwise V_ nhon-monotonic

Policy Computation

argmax Q*(s,a)

acAp(s)
argmax Y Pr(s'ls,a) PZ(S,CL,SI) +yV*(s")

CLEAP(S) S,ES

Policy Evaluation

A system of linear equations in |S| variables.

Changing the Search Space

* Value Iteration
« Search in value space
« Compute the resulting policy

* Policy Iteration
« Search in policy space
« Compute the resulting value

Policy iteration [Howard’60]

 assign an arbitrary assignment of n, to each state.

* repeat - costly: O(n3)
. licy Evalua@compute V. .q: the evaluation of &, T

« Policy Improvement: for all states s
* compute 7, (S): argmax,c aps)Qn+1(S,3)

. i — .. approximate
U Tieg =T, Modified > b?/?/alue Iteration

Policy Iteration using fixed policy

Advantage

« searching in a finite (policy) space as opposed to
uncountably infinite (value) space = convergence faster.

« all other properties follow!

Modified Policy iteration

 assign an arbitrary assignment of n, to each state.

e repeat
 Policy Evaluation: compute V., the approx. evaluation of &,
« Policy Improvement: for all states s
* compute 7, (S): argmax,c aps)Qn+1(S,3)

d Untl| 7tn+1 - TCn
Advantage

 probably the most competitive synchronous dynamic
programming algorithm.

Applications

= Stochastic Games

= Robotics: navigation, helicopter manuevers...
= Finance: options, investments

= Communication Networks

» Medicine: Radiation planning for cancer

= Controlling workflows

» Optimize bidding decisions in auctions

» Traffic flow optimization

= Aircraft queueing for landing; airline meal provisioning
» Optimizing software on mobiles

» Forest firefighting

Extensions

» Heuristic Search + Dynamic Programming
« AO* LAO*, RTDP, ..

= Factored MDPs
« add planning graph style heuristics
« use goal regression to generalize better

= Hierarchical MDPs
 hierarchy of sub-tasks, actions to scale better

* Reinforcement Learning
 learning the probability and rewards
 acting while learning - connections to psychology

= Partially Observable Markov Decision Processes
* noisy sensors; partially observable environment
e popular in robotics

Asynchronous Value Iteration

= States may be backed up in any order
* instead of an iteration by iteration

= As long as all states backed up infinitely often
« Asynchronous Value Iteration converges to optimal

