First-order logic

Whereas propositional logic assumes world contains ${\bf facts},$ first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried ..., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, ...
- \bullet Functions: father of, best friend, third inning of, one more than, end of

Chapter 8 1

Outline

FIRST-ORDER LOGIC

Chapter 8

- ♦ Why FOL?
- $\diamondsuit~$ Syntax and semantics of FOL
- \diamond Fun with sentences
- \diamondsuit Wumpus world in FOL

Logics in general		
Language	Ontological	Epistemological
	Commitment	Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief
Fuzzy logic	facts + degree of truth	known interval value

Chapter 8 2

Chapter 8 5

Chapter 8 4

Pros and cons of propositional logic

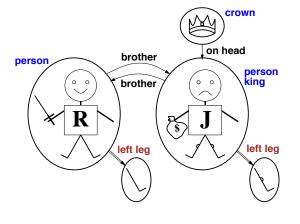
- 😌 Propositional logic is declarative: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Solution Propositional logic is compositional: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Weaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language)
 - E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

Syntax of FOL: Basic elements

Chapter 8 6

Atomic sentences

Atomic sentence = $predicate(term_1, \dots, term_n)$ or $term_1 = term_2$



Chapter 8 10

Complex sentences

Complex sentences are made from atomic sentences using connectives

 $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \Rightarrow S_2, \quad S_1 \Leftrightarrow S_2$ E.g. $Sibling(KingJohn, Richard) \Rightarrow Sibling(Richard, KingJohn)$ $>(1,2) \lor \leq (1,2)$ $>(1,2) \land \neg >(1,2)$

Truth example

Consider the interpretation in which $Richard \rightarrow$ Richard the Lionheart $John \rightarrow$ the evil King John $Brother \rightarrow$ the brotherhood relation

Under this interpretation, Brother(Richard, John) is true just in case Richard the Lionheart and the evil King John are in the brotherhood relation in the model

Chapter 8 8

Chapter 8 7

Chapter 8 11

Truth in first-order logic

Sentences are true with respect to a model and an interpretation

Model contains ≥ 1 objects (domain elements) and relations among them

Interpretation specifies referents for

constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations

An atomic sentence $predicate(term_1, \ldots, term_n)$ is true iff the objects referred to by $term_1, \ldots, term_n$ are in the relation referred to by predicate

Models for FOL: Lots!

Entailment in propositional logic can be computed by enumerating models

We **can** enumerate the FOL models for a given KB vocabulary:

For each number of domain elements n from 1 to ∞ For each k-ary predicate P_k in the vocabulary For each possible k-ary relation on n objects For each constant symbol C in the vocabulary For each choice of referent for C from n objects \ldots

Computing entailment by enumerating FOL models is not easy!

Universal quantification

 $\forall \left< variables \right> \ \left< sentence \right>$

Everyone at Berkeley is smart: $\forall x \ At(x, Berkeley) \Rightarrow Smart(x)$

 $\forall x \ P \ \ \text{is true in a model} \ model m \ \text{iff} \ P \ \text{is true with} \ x \ \text{being}$ each possible object in the model

 ${\bf Roughly}$ speaking, equivalent to the conjunction of instantiations of P

 $\begin{array}{l} (At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn)) \\ \land \ (At(Richard, Berkeley) \Rightarrow Smart(Richard)) \\ \land \ (At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley)) \\ \land \ \dots \end{array}$

Another common mistake to avoid

Typically, \wedge is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists x \; At(x, Stanford) \Rightarrow Smart(x)$

is true if there is anyone who is not at Stanford!

Chapter 8 16

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \wedge as the main connective with $\forall:$

$\forall x \; At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Properties of quantifiers

 $\begin{array}{l} \forall x \ \forall y \quad \text{is the same as } \forall y \ \forall x \quad (\underline{why}??) \\ \exists x \ \exists y \quad \text{is the same as } \exists y \ \exists x \quad (\underline{why}??) \\ \exists x \ \forall y \quad \text{is not the same as } \forall y \ \exists x \\ \exists x \ \forall y \quad Loves(x,y) \\ \text{"There is a person who loves everyone in the world"} \\ \forall y \ \exists x \quad Loves(x,y) \\ \text{"Everyone in the world is loved by at least one person"} \\ \text{Quantifier duality: each can be expressed using the other} \end{array}$

 $\forall x \ Likes(x, IceCream) \qquad \neg \exists x \ \neg Likes(x, IceCream) \\ \exists x \ Likes(x, Broccoli) \qquad \neg \forall x \ \neg Likes(x, Broccoli) \\ \end{cases}$

Chapter 8 17

Chapter 8 14

Chapter 8 13

Existential quantification

$\exists \langle variables \rangle \ \langle sentence \rangle$

Someone at Stanford is smart: $\exists x \ At(x, Stanford) \land Smart(x)$

 $\exists x \ P \quad \text{is true in a model } m \text{ iff } P \text{ is true with } x \text{ being some possible object in the model}$

Roughly speaking, equivalent to the disjunction of instantiations of P

- $(At(KingJohn, Stanford) \land Smart(KingJohn))$
- \lor (At(Richard, Stanford) \land Smart(Richard))
- \lor (At(Stanford, Stanford) \land Smart(Stanford))

V ...

Fun with sentences

Brothers are siblings

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

 $\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

 $\begin{array}{ll} \forall x,y \;\; FirstCousin(x,y) \; \Leftrightarrow \; \exists \, p,ps \;\; Parent(p,x) \wedge Sibling(ps,p) \wedge \\ Parent(ps,y) \end{array}$

Chapter 8 19

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x, y \; Sibling(x, y) \Leftrightarrow Sibling(y, x).$

One's mother is one's female parent

Equality

 $term_1 = term_2$ is true under a given interpretation if and only if $term_1$ and $term_2$ refer to the same object

E.g., 1 = 2 and $\forall x \times (Sqrt(x), Sqrt(x)) = x$ are satisfiable 2 = 2 is valid

E.g., definition of (full) Sibling in terms of Parent: $\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \ \neg(m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Chapter 8 23

Chapter 8 22

Chapter 8 20

Fun with sentences

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall x,y \ Sibling(x,y) \ \Leftrightarrow \ Sibling(y,x).$

One's mother is one's female parent

 $\forall x, y \ Mother(x, y) \Leftrightarrow (Female(x) \land Parent(x, y)).$

A first cousin is a child of a parent's sibling

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

Tell(KB, Percept([Smell, Breeze, None], 5)) $Ask(KB, \exists a \ Action(a, 5))$

I.e., does $K\!B$ entail any particular actions at t=5?

Answer: Yes, $\{a/Shoot\} \leftarrow$ substitution (binding list)

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x,y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

"Perception"

 $\forall b, g, t \ Percept([Smell, b, g], t) \Rightarrow Smelt(t)$ $\forall s, b, t \ Percept([s, b, Glitter], t) \Rightarrow AtGold(t)$

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already? $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

 $\begin{array}{l} Holding(Gold,t) \text{ cannot be observed} \\ \Rightarrow \text{keeping track of change is essential} \end{array} \\ \end{array}$

Describing actions I

"Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe non-changes due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change (a) representation—avoid frame axioms (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats—what if gold is slippery or nailed down or \ldots

Ramification problem: real actions have many secondary consequences—what about the dust on the gold, wear and tear on gloves, \ldots

Chapter 8 25

Deducing hidden properties

Properties of locations:

 $\begin{aligned} \forall x, t \ At(Agent, x, t) \land Smelt(t) \Rightarrow Smelly(x) \\ \forall x, t \ At(Agent, x, t) \land Breeze(t) \Rightarrow Breezy(x) \end{aligned}$

Squares are breezy near a pit:

 $\begin{array}{l} \mbox{Causal rule} - \mbox{infer effect from cause} \\ \forall x,y \;\; Pit(x) \wedge Adjacent(x,y) \; \Rightarrow \; Breezy(y) \end{array}$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

$\begin{array}{l} \text{Definition for the }Breezy \text{ predicate:} \\ \forall y \ Breezy(y) \Leftrightarrow \ [\exists x \ Pit(x) \land Adjacent(x,y)] \end{array}$

Chapter 8 26

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a **predicate** (not an action per se):

 $\mathsf{P} \ \mathsf{true} \ \mathsf{afterwards} \quad \Leftrightarrow \quad [\mathsf{an} \ \mathsf{action} \ \mathsf{made} \ \mathsf{P} \ \mathsf{true}$

∨ P true already and no action made P false]

For holding the gold:

 $\begin{array}{l} \forall a,s \ Holding(Gold, Result(a,s)) \Leftrightarrow \\ [(a = Grab \land AtGold(s)) \\ \lor (Holding(Gold,s) \land a \neq Release)] \end{array}$

Chapter 8 29

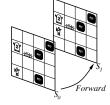
Chapter 8

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s



Making plans

Initial condition in KB: $At(Agent, [1, 1], S_0)$ $At(Gold, [1, 2], S_0)$

 $\begin{array}{l} \mbox{Query: } Ask(KB, \exists \ s \ Holding(Gold, s)) \\ \mbox{i.e., in what situation will I be holding the gold?} \end{array}$

 $\begin{array}{l} \mbox{Answer: } \{s/Result(Grab, Result(Forward, S_0))\} \\ \mbox{i.e., go forward and then grab the gold} \end{array}$

This assumes that the agent is interested in plans starting at S_0 and that S_0 is the only situation described in the ${\rm KB}$

Making plans: A better way

Represent plans as action sequences $[a_1, a_2, \ldots, a_n]$

PlanResult(p, s) is the result of executing p in s

Then the query $Ask(KB, \exists p \ Holding(Gold, PlanResult(p, S_0)))$ has the solution $\{p/[Forward, Grab]\}$

 $\begin{array}{l} \textbf{Definition of } PlanResult \text{ in terms of } Result: \\ \forall s \ PlanResult([],s) = s \\ \forall a,p,s \ PlanResult([a|p],s) = PlanResult(p,Result(a,s)) \end{array}$

Planning systems are special-purpose reasoners designed to do this type of inference more efficiently than a general-purpose reasoner

Chapter 8 31

Summary

First-order logic:

- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers

Increased expressive power: sufficient to define wumpus world

Situation calculus:

- conventions for describing actions and change in FOL
- can formulate planning as inference on a situation calculus KB

Chapter 8 32