
1

Rule Induction

Rule Induction

� Given: Set of positive and negative examples of 
some concept
� Example: (x1, x2, … , xn, y)
� y: concept (Boolean)
� x1, x2, … , xn: attributes (assume Boolean)

� Goal: Induce a set of rules that cover all positive 
examples and no negative ones
� Rule: xa ^ xb ^ … ⇒⇒⇒⇒ y (xa: Literal, i.e., xi or its negation)
� Same as Horn clause:  Body ⇒⇒⇒⇒ Head
� Rule r covers example x iff x satisfies body of r

� Eval(r): Accuracy, info gain, coverage, support, etc.

Learning a Single Rule

head ← y
body ← Ø
repeat

for each literal x
rx

← r with x added to body
Eval(rx)

body ← body ^ best x
until no x improves Eval(r)
return r

Learning a Set of Rules

R ←  Ø
S ← examples
repeat

learn a single rule r
R ←  R U { r }

S ←  S − positive examples covered by r
until S contains no positive examples
return R



2

First-Order Rule Induction (a.k.a. 
Inductive Logic Programming)

� y and xi are now predicates with arguments
E.g.: y is Ancestor(x,y), xi is Parent(x,y)

� Literals to add are predicates or their negations

� Literal to add must include at least one variable
already appearing in rule

� Adding a literal changes # groundings of rule
E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒⇒⇒⇒ Ancestor(x,y)

� Eval(r) must take this into account
E.g.: Multiply by # positive groundings of rule

still covered after adding literal

MLN Structure Learning

� Generalizes feature induction in Markov nets
� Any inductive logic programming approach can be 

used, but . . .

� Goal is to induce any clauses, not just Horn
� Evaluation function should be likelihood
� Requires learning weights for each candidate
� Turns out not to be bottleneck
� Bottleneck is counting clause groundings
� Solution: Subsampling

MLN Structure Learning

� Initial state: Unit clauses or hand-coded KB
� Operators: Add/remove literal, flip sign
� Evaluation function:

Pseudo-likelihood + Structure prior

� Search: Beam search, shortest-first search


