

Rigid Body Transformations in 3D

Translation and Scaling in 3D

The Camera Model

$$
\begin{aligned}
& \left(\begin{array}{c}
\text { s Ipr } \\
\text { s Ipc } \\
\text { s }
\end{array}\right]
\end{aligned}=\left(\begin{array}{cccc}
\mathrm{c} 11 & \mathrm{c} 12 & \mathrm{c} 13 & \mathrm{c} 14 \\
\mathrm{c} 21 & \mathrm{c} 22 & \mathrm{c} 23 & \mathrm{c} 24 \\
\mathrm{c} 31 & \mathrm{c} 32 & \mathrm{c} 33 & 1
\end{array}\right)\left[\begin{array}{c}
\mathrm{Px} \\
\mathrm{Py} \\
\mathrm{Pz} \\
1
\end{array}\right]
$$

The camera model handles the rigid body transformation from world coordinates to camera coordinates plus the perspective transformation to image coordinates.

One translation and two rotations to line it up with a major axis. Now rotate it about that axis. Then apply the reverse transformations (R2, R1, T) to move it back.

$$
\left[\begin{array}{c}
\mathrm{Px}^{\prime} \\
\mathrm{Py}^{\prime} \\
\mathrm{Pz}^{\prime} \\
1
\end{array}\right]=\left(\begin{array}{llll}
\mathrm{r} 11 & \mathrm{r} 12 & \mathrm{r} 13 & 0 \\
\mathrm{r} 21 & \mathrm{r} 22 & \mathrm{r} 23 & 0 \\
\mathrm{r} 31 & \mathrm{r} 32 & \mathrm{r} 33 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{l}
\mathrm{Px} \\
\mathrm{Py} \\
\mathrm{Pz} \\
1
\end{array}\right)
$$

Extrinsic Parameters

- translation parameters
$\mathrm{t}=[\mathrm{tx}$ ty tz$]$
- rotation matrix

$$
\mathrm{R}=\left(\begin{array}{cccc}
\mathrm{r} 11 & \mathrm{r} 12 & \mathrm{r} 13 & 0 \\
\mathrm{r} 21 & \mathrm{r} 22 & \mathrm{r} 23 & 0 \\
\mathrm{r} 31 & \mathrm{r} 32 & \mathrm{r} 33 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Tsai's Geometric Setup

Tsai's Procedure

1. Given the n point correspondences ((xi,yi,zi), (ui,vi))

Compute matrix A with rows ai

$$
\text { ai }=(v i * x i, v i * y i,-u i * x i,-u i * v i, v i)
$$

These are known quantities which will be used to solve for intermediate values, which will then be used to solve for the parameters sought.

Use μ to solve for ty, tx, and 4 rotation parameters
5. Let $\mathrm{U}=\mu 1^{2}+\mu 2^{2}+\mu 3^{2}+\mu 4$. 2 Use U to calculate ty ${ }^{2}$. (see text)
6. Try the positive square root $\operatorname{ty}=(\text { ty })^{2 / 2}$ and use it to compute translation and rotation parameters.

$$
\begin{array}{|r|}
\hline \mathrm{r} 11=\mu 1 \mathrm{ty} \\
\mathrm{r} 12=\mu 2 \mathrm{ty} \\
\mathrm{r} 21=\mu 3 \mathrm{ty} \\
\mathrm{r} 22=\mu 4 \mathrm{ty} \\
\mathrm{tx}=\mu 5 \mathrm{ty} \\
\hline
\end{array}
$$

Now we know

2 translation parameters and 4 rotation parameters.
except...

Determine true sign of ty and compute remaining rotation parameters.
7. Select an object point P whose image coordinates
(u,v) are far from the image center.
8. Use P's coordinates and the translation and rotation
parameters so far to estimate the image point
that corresponds to P.
If its coordinates have the same signs as (u,v),
then keep ty, else negate it.
9. Use the first 4 rotation parameters to calculate
the remaining 5 .

Select an object point P whose image coordinates (u, v) are far from the image center.
. Use P's coordinates and the translation and rotation parame

If its coordinates have the same signs as (u,v), then keep ty, else negate it.
. Use the first 4 rotation parameters to calculate the remaining 5 .

Solve another linear system.

10. We have tx and ty and the 9 rotation parameters. Next step is to find $t z$ and f.

Form a matrix A^{\prime} whose rows are:

$$
a i^{\prime}=(r 21 * x i+r 22 * y i+t y, \quad \text { vi })
$$

and a vector b^{\prime} whose rows are:

$$
\mathrm{bi}^{\prime}=(\mathrm{r} 31 * \mathrm{xi}+\mathrm{r} 32 * \mathrm{yi}) * \mathrm{vi}
$$

11. Solve $A^{*} * \mathbf{v}=\mathbf{b}^{\prime}$ for $\mathbf{v}=(\mathrm{f}, \mathrm{tz})$.

For a correspondence ($\mathrm{r} 1, \mathrm{c} 1$) in image 1 to ($\mathrm{r} 2, \mathrm{c} 2$) in image 2 :

1. Both cameras were calibrated. Both camera matrices are then known. From the two camera equations we get

Direct solution uses 3 equations, won't give reliable results.

Solve by computing the closest approach of the two skew rays.
 segment connecting the two rays and let P be its midpoint.

