Binary Image Analysis

Binary image analysis

 consists of a set of image analysis operations that are used to produce or process binary images, usually images of 0's and 1's.

0 represents the background1 represents the foreground

00010010001000 00011110001000 00010010001000

1

What kinds of operations?

- Separate objects from background and from one another
- Aggregate pixels for each object
- Compute features for each object

3

Binary Image Analysis

- is used in a number of practical applications
 - part inspection
 - riveting
 - fish counting
 - · document processing

Example: red blood cell image

- Many blood cells are separate objects
- Many touch bad!
- Salt and pepper noise from thresholding
- How useable is this data?

Results of analysis

- 63 separate objects detected
- Single cells have area about 50
- Noise spots
- Gobs of cells

	Swanding Box	roid	Centi		lrea	Ubject
	[1 22 1 39]	, 2	8.8	(383	1
	[1 11 42 55]	, 8	5.8	1	83	2
	[1 2 55 60]	, 5	1.5	1	11	3
	[1 1 62 62]	. 6	. 1	1	1	4
gobs	[1 40 35 100]					5
cell	[40 46 28 35]	, 3	43	98	45	32
	1) [41 47 98 100]					33
cell	[42 48 83 91]	, B	45	1	52	34
cell	[44 52 49 57]	. 5	48	(54	35
	[85 92 74 82]	Ų.	88	α	44	60
	[85 85 94 94]	. 9	.85	(1	61
	[89 90 1 4]					62
	[90 90 6 6]	. 6	90	1	1	63

5

Useful Operations

- 1. Thresholding a gray-tone image
- 2. Determining good thresholds
- 3. Connected components analysis
- 4. Binary mathematical morphology
- 5. All sorts of feature extractors (area, centroid, circularity, ...)

Thresholding

- Background is black
- Healthy cherry is bright
- Bruise is medium dark
- Histogram shows two cherry regions (black background has been removed)

Histogram-Directed Thresholding

How can we use a histogram to separate an image into 2 (or several) different regions?

Is there a single clear threshold? 2? 3?

Automatic Thresholding: Otsu's Method

Assumption: the histogram is bimodal

Grp 1 Grp 2

Method: find the threshold t that minimizes the weighted sum of within-group variances for the two groups that result from separating the gray tones at value t.

See text (at end of Chapter 3) for the recurrence relations; in practice, this operator works very well for true bimodal distributions and not too badly for others.

9

Once you have a binary image, you can identify and

Once you have a binary image, you can identify and then analyze each **connected set of pixels**.

The connected components operation takes in a binary image and produces a **labeled image** in which each pixel has the integer label of either the background (0) or a component.

11

Thresholding Example

Methods for CC Analysis

- 1. Recursive Tracking (almost never used)
- 2. Parallel Growing (needs parallel hardware)
- 3. Row-by-Row (most common)
 - Classical Algorithm (see text)
 - Efficient Run-Length Algorithm (developed for speed in real industrial applications)

Equivalent Labels

Original Binary Image

13

Equivalent Labels

The Labeling Process

1 ≡ 2 1 ≡ 3

Run-Length Data Structure

Run-Length Algorithm

```
Procedure run_length_classical
{
    initialize Run-Length and Union-Find data structures
    count <- 0

/* Pass 1 (by rows) */

for each current row and its previous row
    {
    move pointer P along the runs of current row
    move pointer Q along the runs of previous row
```


Pass 2 (by runs)

```
/* Relabel each run with the name of the
   equivalence class of its label */
For each run M
   {
    label(M) <- find(label(M))
   }
}</pre>
```

where union and find refer to the operations of the Union-Find data structure, which keeps track of sets of equivalent labels.

19

Labeling shown as Pseudo-Color

connected components of 1's from thresholded image

connected components of cluster labels

Mathematical Morphology

Binary mathematical morphology consists of two basic operations

dilation and erosion

and several composite relations

closing and opening conditional dilation

. . .

21

Dilation Dilation Dilation expands the connected sets of 1s of a binary image. It can be used for 1. growing features 2. filling holes and gaps

Structuring Elements

A structuring element is a shape mask used in the basic morphological operations.

They can be any shape and size that is digitally representable, and each has an origin.

box hexagon

disk

something

box(length,width)

disk(diameter)

Dilation with Structuring Elements

The arguments to dilation and erosion are

- 1. a binary image B
- 2. a structuring element S

dilate(B,S) takes binary image B, places the origin of structuring element S over each 1-pixel, and ORs the structuring element S into the output image at the corresponding position.

25

26

Erosion with Structuring Elements

erode(B,S) takes a binary image B, places the origin of structuring element S over every pixel position, and ORs a binary 1 into that position of the output image only if every position of S (with a 1) covers a 1 in B.

Example 1 to Try

Example 2 to Try

First erode and then dilate with the same S.

Opening and Closing

- Closing is the compound operation of dilation followed by erosion (with the same structuring element)
- Opening is the compound operation of erosion followed by dilation (with the same structuring element)

29

Gear Tooth Inspection

original binary image

How did they do it?

detected defects

30

Region Properties

Properties of the regions can be used to recognize objects.

- geometric properties (Ch 3)
- · gray-tone properties
- color properties
- texture properties
- shape properties (a few in Ch 3)
- motion properties
- relationship properties (1 in Ch 3)

3

Geometric and Shape Properties

- area
- centroid
- perimeter
- perimeter length
- circularity
- elongation
- mean and standard deviation of radial distance
- bounding box
- extremal axis length from bounding box
- second order moments (row, column, mixed)
- lengths and orientations of axes of best-fit ellipse

Which are statistical? Which are structural?

Region Adjacency Graph

A region adjacency graph (RAG) is a graph in which each node represents a region of the image and an edge connects two nodes if the regions are adjacent.

This is jumping ahead a little bit.

We'll consider this further for structural image analysis.