

Factors that Affect Perception

- Light: the spectrum of energy that illuminates the object surface
- Reflectance: ratio of reflected light to incoming light
- Specularity: highly specular (shiny) vs. matte surface
- Distance: distance to the light source
- Angle: angle between surface normal and light source
- Sensitivity how sensitive is the sensor

Some physics of color

- White light is composed of all visible frequencies (400-700)
- Ultraviolet and X rays are of much smaller wavelength
- Infrared and radio waves are of much longer wavelength

Coding methods for humans

- RGB is an additive system (add colors to black) used for displays
- CMY[K] is a subtractive system for printing
- HSV is good a good perceptual space for art, psychology, and recognition
- YIQ used for TV is good for compression

RGB color cube

- R, G, B values normalized to $(0,1)$ interval
- human perceives gray for triples on the diagonal
- "Pure colors"
on corners

Color palette and normalized RGB

(Left) Image of food originating from a digital camera; (center) saturation value of each pixel decreased 20\%; (right) saturation value of each pixel increased 40%.

Properties of HSI (HSV)

- Separates out intensity I from the coding
- Two values ($\mathrm{H} \& \mathrm{~S}$) encode chromaticity
- Convenient for designing colors
- Hue H is defined by an angle
- Saturation S models the purity of the color

$$
\mathrm{S}=1 \text { for a completely pure or saturated color }
$$ $\mathrm{S}=0$ for a shade of "gray"

YIQ and YUV for TV signals

- Have better compression properties
- Luminance Y encoded using more bits than chrominance values I and Q; humans more sensitive to Y than I, Q
- NTSC TV uses luminance Y; chrominance values I and Q
- Luminance used by black/white TVs
- All 3 values used by color TVs
- YUV encoding used in some digital video and JPEG and MPEG compression

Conversion from RGB to YIQ

- An approximate linear transformation from RGB to YIQ is

$$
\begin{aligned}
\text { luminance } Y & =0.30 R+0.59 G+0.11 B \\
R-\text { cyan } I & =0.60 R-0.28 G-0.32 B \\
\text { magenta }- \text { green } Q & =0.21 R-0.52 G+0.31 B
\end{aligned}
$$

Color Clustering by K-means Algorithm

```
Form K-means clusters from a set of n-dimensional vectors
1. Set ic (iteration count) to 1
2. Choose randomly a set of K means ml(1), .., mK(1).
3. For each vector xi, compute D(xi,mk(ic)), k=1,...K
    and assign xi to the cluster Cj with nearest mean.
4. Increment ic by 1, update the means to get m1(ic),...,mK(ic).
5. Repeat steps 3 and 4 until Ck(ic) = Ck(ic+1) for all k.
```


Colors can be used for image segmentation into regions

- Can cluster on color values and pixel locations
- Can use connected components and an approximate color criteria to find regions
- Can train an algorithm to look for certain colored regions - for example, skin color

Extracting "white regions"

- Program learns white from training set of sample pixels.
- Aggregate similar neighbors to form regions.
- Components might be classified as characters.
- (Work contributed by David Moore.)

Finding a face in video frame

- (left) input video frame
- (center) pixels classified according to RGB space
- (right) largest connected component with aspect similar to a face (all work contributed by Vera Bakic)

19

Color histograms can represent an image

- Histogram is fast and easy to compute.
- Size can easily be normalized so that different image histograms can be compared.
- Can match color histograms for database query or classification.

How to make a color histogram

- Make 3 histograms and concatenate them
- Create a single pseudo color between 0 and 255 by using 3 bits of $R, 3$ bits of G and 2 bits of B (which bits?)
- Can normalize histogram to hold frequencies so that bins total 1.0

23

Apples versus oranges

(b)
(09)

Separate HSI histograms for apples (left) and oranges (right) used by IBM's VeggieVision for recognizing produce at the grocery store checkout station (see Ch 16)

Swain and Ballard's Histogram Matching for Color Object Recognition

Opponent Encoding: \quad| $\cdot w b=R+G+B$ |
| :--- |
| $\bullet r g=R-G$ |
| $\bullet b y=2 B-R-G$ |

Histograms: $8 \times 16 \times 16=2048$ bins
Intersection of image histogram and model histogram:
intersection $(h(I), h(M))=\sum_{j=1}^{n} \min \{h(I)[j], h(M)[j]\}$
Match score is the normalized intersection:
$\operatorname{match}(h(I), h(M))=$ intersection $(h(I), h(M)) / \sum_{j=1}^{\text {numbins }} h(M)[j]$

Models of Reflectance

We need to look at models for the physics of illumination and reflection that will

1. help computer vision algorithms extract information about the 3D world,
and
2. help computer graphics algorithms
render realistic images of model scenes.

The Lambertian Model:
Diffuse Surface Reflection
A diffuse reflecting surface reflects light uniformly in all directions

> Uniform brightness for all viewpoints of a planar surface.

Phong reflection model

- Reasonable realism, reasonable computing
- Uses the following components
(a) ambient light
(b) diffuse reflection component
(c) specular reflection component
(d) darkening with distance

Components (b), (c), (d) are summed over all light sources.

- Modern computer games use more complicated models.

31

Phong shading model uses

1. the reflcctive properties of surface elt imaging at $I[x, y]$

- $K_{d X}$ is diffuse reflectivity
- $K_{\text {Sd }}$ for specular reflectivity
- $K_{\text {p } \lambda}$ is a vector of coefficients of
- reflection for different, wavelengths λ

2. the position and characteristics of all M light sources
Phong model for intensity at wavelength lambda at pixel $[x, y]$

$$
\left.\begin{array}{l}
\text { ambient } \\
I_{\lambda}[x, y]=I_{a} K_{d \lambda}
\end{array} \sum_{m=1}^{M}\left(\frac{1}{d_{m}^{2}} I_{m \lambda}\left[K_{d \lambda}(\text { nos })_{m}\right)+K_{s \lambda}\left(\mathrm{R}_{\mathrm{m}} \circ \mathrm{~V}\right)^{\mathrm{a}}\right]\right)
$$

$I_{m \times}$ is the intensity of the light
source m for wavelength λ. (R, G, B)
The m-th light source is a distance d_{m} from
the surface element and makes reflection ray R_{m} off the surface element.

The Dichromatic Reflection Model
The light reflected from a point on a dielectric nonuniform material is a mixture of the light reflected from the material surface and that from the material body.

Color Image Analysis with an Intrinsic Reflection Model*

The Problem

- Understand the reflection properties of dielectric materials (e.g. plastics).
- Use them to separate highlights from true color of an object

Let $L(\lambda, i, e, g)$ be the total reflected light.
λ wavelength
i angle of incident light
e angle of emitted light
g phase angle
Then $L(\lambda, i, e, g)=L_{s}(\lambda, i, e, g)+L_{b}(\lambda, i, e, g)$

- The surface reflection component $L_{s}(\lambda, i, e, g)$ appears as a highlight or gloss.
- The body reflection component $L_{b}(\lambda, i, e, g)$ gives the characteristic object color.

The Dichromatic Reflection Equation

$$
L(\lambda, i, e, g)=m_{s}(i, e, g) c_{s}(\lambda)+m_{b}(i, e, g) c_{b}(\lambda)
$$

- C_{s} and C_{b} are the spectral power distributions
- m_{s} and m_{b} are the geometric scale factors

For RGB images, this reduces to the pixel equation
$C=[R, G, B]=m_{s} C_{s}+m_{b} C_{b}$

Dichromatic Plane

- The combined color cluster looks like a skewed T.
- Skewing angle depends on color difference between body and surface reflection.
- As a heuristic, the highlight starts in the upper 50\% of the matte line.

Object Shape and Color Variation

Assumption: all points on one object depend on the

Color Image Analysis

- Color segmentation based on RGB will often find
boundaries along highlights and shadows.
- The DRM can be used to better segment.
- light mixtures all fall into a dichromatic plane in color space

Algorithm:

1. compute initial rough segmentation

- compute principal components of color distribution from small, nonoverlapping image windows.
- combine neighboring windows with similar color distributions into larger regions of locally consistent color

2. For regions with linear descriptions

- approximate c_{b} by the first eigenvector of its color distribution
- construct a color cylinder with ${c_{b}}$ as axis and width a multiple of estimated camera noise
- use the cylinder to decide which pixels to include in the image region
- result is a color segmentation that outlines the matte colors

3. Use the skewed T idea to find highlight clusters related to the matte clusters.
4. Use matte plus highlights to form the planar hypothesis.
5. Use the planar hypothesis to grow the matte linear object area into the highlight area.

See transparency for experimental results.

