Robust Visual Motion Analysis: Piecewise-Smooth Optical Flow and Motion-Based Detection and Tracking

Ming Ye

Electrical Engineering, University of Washington mingye@u.washington.edu

What Is Visual Motion

- 2D image velocity
 - 3D motion projection
 - Temporal correspondence
 - Image deformation

- Optical flow
 - An image of 2D velocity
 - Each pixel $V_{S=(x,y)} = (u_S, v_S)$
 - $(x,y,t) \Leftrightarrow (x+u,y+v,t+1)$

Structure From Motion

Rigid scene + camera translation

Estimated horizontal motion

Depth map

Scene Dynamics Understanding

Estimated horizontal motion

- What're moving? How?
 - Surveillance
 - Event analysis
 - Video compression

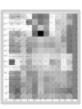
Motion smoothness

Target Detection and Tracking

A tiny airplane --- only observable by its distinct motion

Tracking results

Image Distortion Measurement



- Image deformation
 - Measure it. Remove it.
 - Image-based rendering

Research Areas

- Structure from motion
- Scene dynamics analysis
- Object detection and tracking
- Video compression
- Image/video enhancement
- Image-based rendering
- Visual motion estimation

Outline

- Optical flow estimation
 - Background
 - A local method with error analysis
 - A Bayesian approach with global optimization
- Motion-based detection and tracking

Optical Flow Estimation

Basics

- Template matching
- Assumptions:
 - Brightness conservation
 - Flow smoothness

Difficulties:

- Aperture problem (local information insufficient)
- Outliers (motion boundaries, abrupt image noise)

Previous Work (1/2)

- Brightness conservation
 - Matching-based I(x, y, t) = I(x + u, y + v, t + 1)
 - Gradient-based $I_x u + I_y v + I_t = 0$ (OFC)
- Flow smoothness
 - Local parametric AV = b: $\begin{bmatrix} I_{s_1} & I_{s_1} \\ \vdots & \vdots \\ I_{s_N} & I_{s_N} \end{bmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{bmatrix} I_{s_1} \\ \vdots \\ I_{s_N} \end{bmatrix}$ [Lucas-Kanade 81] [Haralick-Lee 83]
 - $= \underset{\text{argmin}}{\text{Global}} \underbrace{(\underset{z_i}{\text{optimization}}_{z_i u_s + I_{v_s}, v_s + I_{i_s})^2 + I} \sum_{n \in N_s^4} [(u_s u_n)^2 + (v_s v_n)^2]}_{n \in N_s^4}$ [Horn-Schunck 81]

Previous Work (2/2)

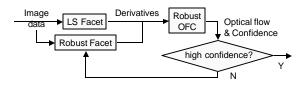
- Handle motion discontinuities & Outliers
 - $\begin{tabular}{l} \blacksquare & \textbf{Robust statistics} & \textbf{[Black-Anandan 96]} \\ \arg\min \sum_{\text{all sites s}} \{ {\bf r}(I_{x_s} u_s + I_{y_s} v_s + I_{t_s}, {\bf s}_B) + I\sum_{m \in N_s^+} [{\bf r}(u_s u_n, {\bf s}_S) + {\bf r}(v_s v_{n_j}, {\bf s}_S)] \} \\ \end{tabular}$
 - Many others
- Higher-level methods
- Problems:
 - Gradient calculation
 - Global formulation: S_B, S_S, I values?
 - Computational complexity

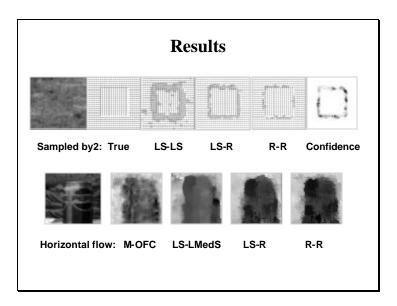
Two-Stage Robust Optical Flow Estimation with Error Propagation

A Local Approach

■ 2-stage regression (LS) [Haralick-Lee 83, Ye-Haralick 98]

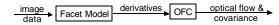
- Previous: robust OFC only
- 2-stage-robust adaptive scheme [Ye-Haralick 00]





Error Analysis

- Covariance propagation [Haralick 96]
 - (Approx.) linear system + small errors



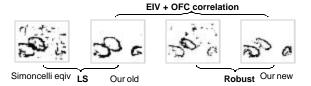
Previous work

	Image noise var.	EIV	OFC corr.
Simoncelli 91	No	No	No
Szeliski 89	Yes	No	No
Nagel 94	No	Yes	Yes
Ye-Haralick 98	Yes	Yes	Yes

New: reject outliers first

Results

A simple motion boundary detector



- Error analysis: why bother
 - Accurate uncertainty is just as important
 - Uncertainty is anisotropic, varies from site to site

Estimating Piecewise-Smooth Optical Flow with Global Matching and Graduated Optimization

A Bayesian Approach

Problem Statement

Assuming only brightness conservation and piecewise-smooth motion, find the optical flow to best describe the intensity change in three frames.

MAP/MRF Formulation

• Maximum A Posterior Criterion:

$$\widetilde{V} = \operatorname{argmax}_{V} P(V \mid D) = \operatorname{argmax}_{V} P(D \mid V) P(V)$$

Likelihood Pri

- Prior: Markov Random Fields
 - Neighborhood system: 8-connected N_s^8 , pairwise
 - Gibbs distribution equivalent ⇒

$$P(V) = \exp(-E_s(V))/Z$$
, $E_s(V) = \sum_{n \in N_s^8} r(|V_s - V_n|, \mathbf{S}_{S_s})$

- Likelihood: exponential
- Global optimization problem

Global Energy Design

■ Global energy $E = \sum_{s \in S} E_B(V_s) + E_S(V_s)$

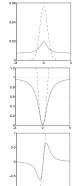
• Matching error $E_B(V_s) = r(e_W(V_s), s_{B_s})$

 $\bullet \text{ Warping error } e_{\scriptscriptstyle W}(V_{\scriptscriptstyle s}) = \min(|I^-(V_{\scriptscriptstyle s}) - I_{\scriptscriptstyle s}|, |I^+(V_{\scriptscriptstyle s}) - I_{\scriptscriptstyle s}|)$

• 3-Frame Matching Without aliasing, all pixels in a frame are visible in the previous or the next frame.

• Smoothness error $E_s(V_i) = \frac{1}{8} \sum_{s \in S^s} \mathbf{r}(|V_s - V_n|, \mathbf{s}_{S_s})$

Error Function r(x,s):



A distribution with fatter tails

An error norm less drastic than L2

Robust against outliers

Simultaneous segmentation

Smoothness outliers = motion discontinuities

Use Geman-McClure for redescending & normalization $\mathbf{r}(x,s) = \frac{x^2}{s^2 + x^2} \qquad y(x,s) = \mathbf{r}'(x,s) = \frac{2xs}{(s^2 + x^2)^2}$

$$\mathbf{r}(x,\mathbf{s}) = \frac{x^2}{\mathbf{s}^2 + x^2} \qquad \mathbf{y}(x,\mathbf{s}) = \mathbf{r}'(x,\mathbf{s}) = \frac{2x\mathbf{s}}{(\mathbf{s}^2 + x^2)^2}$$

Advantages

Compare with [Black-Anandan 96]

$$\arg\min_{\text{all sites}} \left\{ \mathbf{r}(I_{x_s} u_s + I_{y_s} v_s + I_{t_s}, \mathbf{s}_B) + I \sum_{n \in N_s^4} [\mathbf{r}(u_s - u_n, \mathbf{s}_S) + \mathbf{r}(v_s - v_{n_j}, \mathbf{s}_S)] \right\}$$

	Proposed	Black-Anandan 96
Brightness constr	Matching-based	Gradient-based
Scales S_B, S_S	Local adaptive	Rigid+tuning
Contral para	Constant	Tuning

Solution Technique

- Largescale nonconvex problem
 - Statistical relaxation: slow
 - Graduated NonConvexity: LS initialization, scales control annealing
- Our strategy
 - Fastest descent
 - 3-step graduated optimization
 - Two sub-optimal formulations
 - Provide robust initial estimates
 - Gradually learn the local parameters

I: OFC-Based Local Regression

• Lucas-Kanade constraint: AV = b

High-breakdown criterion (LMS/LTS)

Fast deterministic algorithm

Least-squares (LS) initial estimate

Propagate using an LMS-LS procedure

Adaptive outlier resistance

• Faster, more stable accuracy

• Estimate scales s_{B_i}, s_{S_i} from inliers

II: OFC-Based Global Optimization

• Given V, s_R, s_S , find ΔV to minimize

$$E(\Delta V) = \sum_{\text{all sites } s} \left\{ \boldsymbol{r}(e_{\scriptscriptstyle B}(\Delta V_{\scriptscriptstyle S}), \boldsymbol{s}_{\scriptscriptstyle B_{\scriptscriptstyle S}}) + \frac{1}{8} \sum_{\scriptscriptstyle n \in N^{\scriptscriptstyle S}} \boldsymbol{r}(|V_{\scriptscriptstyle S} + \Delta V_{\scriptscriptstyle S} - V_{\scriptscriptstyle n} - \Delta V_{\scriptscriptstyle n}|, \boldsymbol{s}_{\scriptscriptstyle S_{\scriptscriptstyle S}}) \right\}$$

Solution: Successive Over Relaxation

$$u_{\text{new}} = u_{\text{old}} - \mathbf{w} \frac{1}{T(u_{\text{old}})} \frac{\partial E}{\partial u_{\text{old}}}, T(u) = \frac{I_x^2}{\mathbf{s}_B^2} + \frac{8}{\mathbf{s}_S^2}$$

Adaptive step size

■ Initial has dominantly high-freq errors

Fast convergence

III: Minimizing the Global Energy

Given V_{initial}

• Calculate S_{B_c}, S_{S_c}

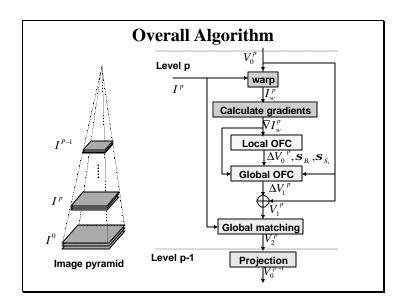
Fastest descent by propagation

■ Generate candidates: $V_c \in \{V_i, i \in N_s^8; \overline{V_i}\}$

■ Replace by if global energy drops

Hierarchical Process

- Handle large motions (>2 pixels/frame)
- Limitations:
 - Sub-sampling, warping and projection errors
 - May become the accuracy bottleneck
- Step III directly works on the image data and is less sensitive to such errors



Advantages

- Best of Everything
 - Local OFC
 - High-quality initial flow estimates
 - Robust local scale estimates
 - Global OFC
 - Improve flow smoothness
 - Global Matching
 - The optimal formulation
 - Correct errors caused by poor gradient quality and hierarchical process
- Results: fast convergence, high accuracy, simultaneous motion boundary detection

Experiments

Quantitative Measures

- True: $V_0 = (u_0, v_0)'$, estimate $\mathcal{V} = (u, v)'$
- Our error measure

$$e = (|u - u_0|, |v - v_0|)|_{\text{all sites}}$$

- Cdf curve of e, Average: \overline{e}
- Barron's angular error [Barron 94]

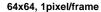
$$e_{\angle} = \overline{\Delta \boldsymbol{q}} (^{\circ}), \Delta \boldsymbol{q} = \arccos \frac{(V_0', 1) \cdot (V', 1)'}{|(V_0', 1)| \cdot |(V', 1)|}$$

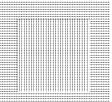
Error magnitude:

$$e_{\parallel} = |\overline{\Delta V}| (\text{pixels}), |\Delta V| = |V - V_0|$$

TS: Translating Squares

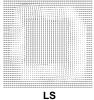
Homebrew, ideal setting, test performance upper bound

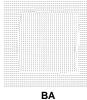


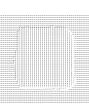


Groundtruth (cropped),
Our estimate looks the same

TS: Flow Estimate Plots





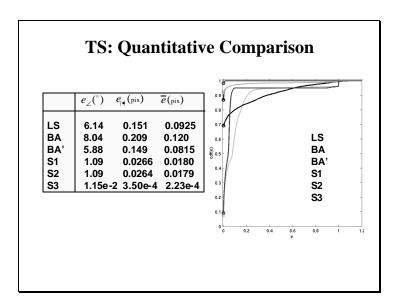


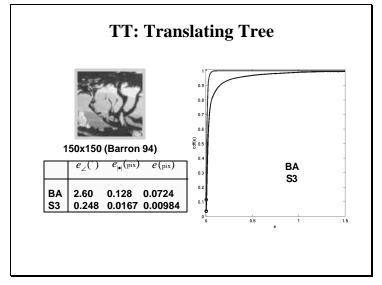
ı

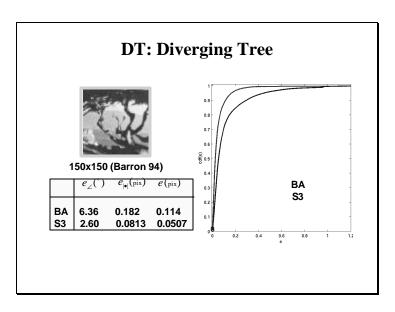
S1 (S2 is close)

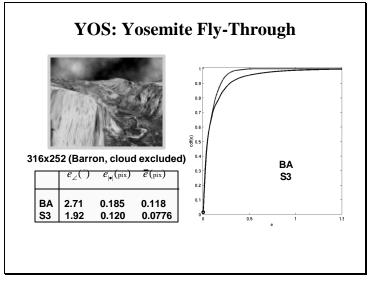
S3 looks the same as the groundtruth.

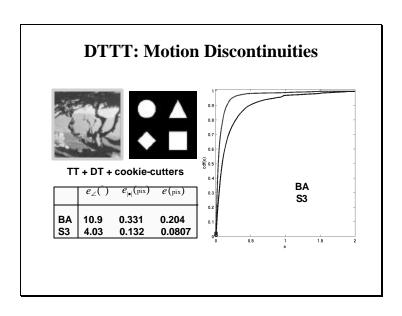
S1, S2, S3: results from our Step I, II, III (final)

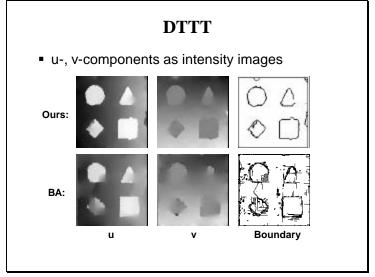


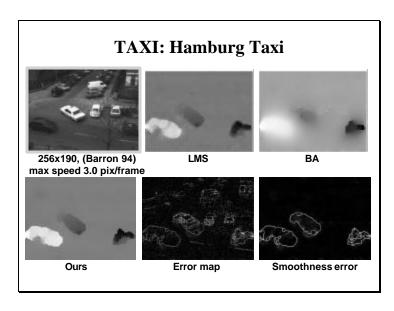


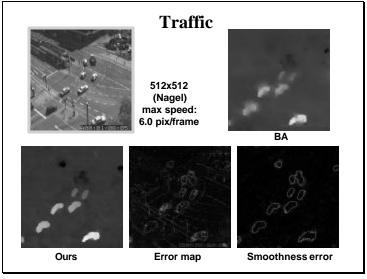


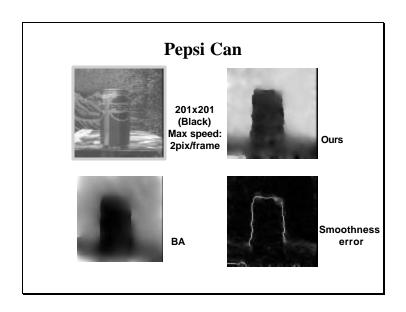


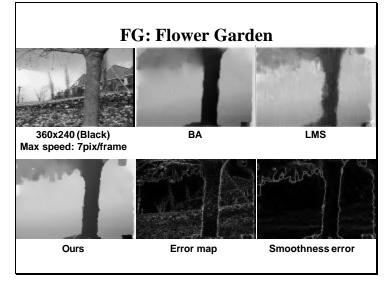












Conclusion and Discussion

Contributions (1/2)

Formulation

- More complete design, minimal parameter tuning
 - Adaptive local scales
 - Strength of two error terms automatically balanced
- 3-frame matching to avoid visibility problems

Solution: 3-step optimization

- Robust initial estimates and scales
- Model parameter self-learning
- Inherit merits of 3 methods and overcome shortcomings

Contributions (2/2)

Results

- High accuracy
- Fast convergence
- By product: motion boundaries

Significance

- Foundation for higher-level (model-based) visual motion analysis
- Methodology applicable to other low-level vision problems

Future Work

Applications

- Non-rigid motion estimation (medical, human)
- Higher-level visual motion analysis
 - Motion segmentation, model selection
 - Occlusion reasoning
 - Layered / contour-based representation
- Warping w/ discontinuities

Refinement

- Bayesian belief propagation (BBP)
- Better global optimization (BBP, Graph cuts etc)

A Motion-Based Bayesian Approach to Aerial Point-Target Detection and Tracking

The Problem

- UAV See And Avoid System
- Point target detection and tracking

The Algorithm Motion-Based Kalman State & Image Measuremen Bayesian Filter sequence & Covariance Covariance Detection Tracking Prior Prediction State variable: 2D position and velocity Track initialization, termination and maintenance

Motion-Based Bayesian Detection

Background motion:

Parametric optical flow

Object candidates:

Fitting outliers

■ Motion: 3x3 SSD + fitting

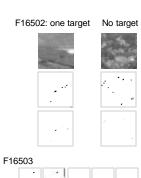
Independent motion

c test

Bayesian mode

Augment candidate set

Validate/update motion



Experiments

1800-frame data:

- One target 1x2-3x3
- Clutter (ground objects)
- Camera wobbling
- Low image quality

Results

- Target in track since 2nd frame
- No false detection
- Error: mean=0.88, sd=0.44 pixels

Show demo

Publications

Patent Pending

"Document Image Matching and Annotation Lifting", with Marshall Bern and David Goldberg, US Patent Application (filed by Xerox Corp.), September 2001.

Book Chapter

Ming Ye and Robert M. Haralick, "Image Flow Estimation Using Facet Model and Covariance Propagation", Vision Interface: Real World Applications of Computer Vision (Machine Perception and Artificial Intelligence Book Series Vol. 35), (Ed.) M. Cherietand Y. H. Yang, World Scientific Pub Co., pp. 209-241, Jan. 2000.

Submission/Preparation

- Ming Ye, Robert M. Haralick and Linda G. Shapiro, "<u>Estimating Piecewise-Smooth Optical Flow with Global Matching and Graduated Optimization</u>", (submitted to) IEEE Trans. on Pattern Analysis and Machine Intelligence Feb. 2002.
- 3. "A motion-based Bayesian approach to aerial point target detection and tracking" (in preparation). Conference Papers
- 4. Ming Ye, Robert M. Haralick and Linda G. Shapiro, " <u>Estimating Optical flow Using a Global Matching Formulation and Graduated Optimization</u>", (accepted to) 16th International Conference on Image Processina 2002.
- Ming Ye and Robert M. Haralick, "Local Gradient Global Matching Piecewise-Smooth Optical Flow", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 712-717,
- 6. Ming Ye, Marshall Bern and David Goldberg, "Document Image Matching and Annotation Lifting", Proc. International Conference on Document Analysis and Recognition, pp. 753-760, 2001.
- Ming Ye and Robert M. Haralick, "Two-Stage Robust Optical Flow Estimation", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 623-8, 2000.

- Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 623-8, 2000.

 8. Ming Ye and Robert M. Haralick, 'Optical Flow From A Least-Timmed Squares Based Adaptive Approach", Proc. 15th International Conference on Pattern Recognition, Vol. 3, pp. 1052-1055, 2000.

 9. S. Aksoy, M. Ye, M. Schauf, M. Song, Y. Wang, R. M. Haralick, J. R. Parker, J. Pivovarov, D. Royko, S. Sun and S. Farneback, "Algorithm Performance Contest", Proc. 15th International Conference on Pattern Recognition, Vol. 4, pp. 870-876, 2000. ICPR'00

 10. Mino Ye and Pobert M. Haralick, "Integer Flow Estimation Using Second Model and Councings."
- 10. Ming Ye and Robert M. Haralick, "Image Flow Estimation Using Facet Model and Covariance Propagation", Proc. Vision Interface '98 pp. 51-58, 1998.