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Structure From Motion

Rigid scene + camera translation Estimated horizontal motion

Depth map

What s Visual Motion

= 2D image velocity
3D motion projection

Image deformation

= Optical flow
' An image of 2D velocity

xy,1) & (x+u,y+v,t+1)

Temporal correspondence

Each pixel Vs=(x,y) = (Us,Vs)

Scene Dynamics Under standing

Estimated horizontal motion

= What're moving? How?
Surveillance
Event analysis
Video compression

Motion smoothness




Target Detection and Tracking

A tiny airplane --- only
observable by its distinct
motion

Tracking results

Research Areas

= Structure from motion

= Scene dynamics analysis

= Object detection and tracking
= Video compression

= Image/video enhancement

= Image-based rendering

= Visual motion estimation

I mage Distortion M easur ement

Ll

= Image deformation
Measure it. Remove it.
Image-based rendering

Outline
= Optical flow estimation
Background
A local method with error analysis
A Bayesian approach with global optimization

= Motion-based detection and tracking




Optical Flow Estimation

PreviousWork (1/2)

= Brightness conservation
Matching-based 1(x,y,t) =1 (x+u,y+v,t+1)

Gradientbased 'U+1W*+1=0 (ofc)

= Flow smoothness
Local parametric ? 'f‘%wé:_g : [Lucas-Kanade 81]
AV =b ; g

M . )
éx lug [Haralick-Lee 83]
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al stess ni N [Horn-Schunck 81]

Basics
= Template matching

= Assumptions:
Brightness conservation
Flow smoothness

= Difficulties:
Aperture problem (local information insufficient)
Outliers (motion boundaries, abrupt image noise)

PreviousWork  (2/2)

= Handle motion discontinuities & Outliers
Robust statistics [Black-Anandan 96]

agmin § {r (LU +1,Vo+ 1,5 5)+1 & [r Uy - upS )+ (V- v, ,S5)]}
dl stes's i Ng
Many others

= Problems:
Gradient calculation
Global formulation:Se:Ss:!  values?
Computational complexity




Two-Stage Robust Optical Flow
Estimation with Error Propagation

A Local Approach

Method

- 2-stage reg ression (LS) [Haralick-Lee 83, Ye-Haralick 98]

image :Facet Model derivatives OFC optical flow &

data covariance

= Previous: robust OFC only

= 2-stage-robust adaptive scheme | ve-Haraick o0]

Image

Derivatives | Robust )
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|_ & Confidence
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Sampled by2: True LSLS LS-R R-R Confidence
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Horizontal flow: M-OFC  LS-LMedS LS-R R-R
Error Analysis

= Covariance propagation [Haralick 96]
(Approx.) linear system + small errors

image :Facet Model derivatives [ opc optical flow &

data covariance

Previous work

Simoncelli 91 No No No

Szeliski 89 Yes No No
Nagel 94 No Yes Yes
Ye-Haralick 9 Yes Yes Yes

= New: reject outliers first




Results

= A simple motion boundary detector
EIV + OFC correlation
g e 5 LR
e BPe e Ao

Simoncellieqgiv | g Our old Robust Our new

= Error analysis: why bother
Accurate uncertainty is just as important
Uncertainty is anisotropic, varies from site to site

Problem Statement

Assuming only brightness conservation
and piecewise-smooth motion, find the
optical flow to best describe the
intensity change in three frames.

Estimating Piecewise-Smooth Optical
Flow with Global Matching and
Graduated Optimization

A Bayesian Approach

MAP/MRF Formulation

Maximum A Posterior Criterion:

V = argmax,, P(V / D) = argmax, P(D | V) P(V)

. Likelihood Prior
Prior: Markov Random Fields

Neighborhood system: 8-connected NS | pairwise
Gibbs distribution equivalent

PV)=ep(- E(V)/Z, EN)=34, el (Vo= Vo lss)

Likelihood: exponential
Global optimization problem




Global Energy Design

= Global energy E= § E,(V.)+E(V.)

allsitess

= Matching error Es()=r(&(V.):ss)
Warping error g, (V) = min(l" (V) - 1, 11° (V) - 1)
3-Frame Matching Without aliasing, all pixels in a

frame are visible in the previous or the next frame.

_1lg
= Smoothness error EsM)=ga riv-Vilss)

i Ng

Advantages

= Compare with [Black-Anandan 96]

agmin & {r (LU +1,vo 41,50+l A1 (U= Uys &) +1 (V- vy S o]}

allsites ni Ng

| Proposed Black-Anandan 96

Brightness constr | Matching-based  Gradient-based
Scales S B,Sls Local adaptive Rigid+tuning

Contral para Constant Tuning

Error Function r(xs ):

= A distribution with fatter tails

m————;/\—f— = An error norm less drastic than L2

Robust against outliers

Simultaneous segmentation
= Smoothness outliers = motion discontinuities

= Use Geman-McClure for

redescending & normalization

. - o __2xs
Y rxs) T Y (88)=rNS) Ty

Solution Technique

= Largescale nonconvex problem
Statistical relaxation: slow
Graduated NonConvexity: LS initialization, scales
control annealing
= Qur strategy
Fastest descent
3-step graduated optimization

Two sub-optimal formulations
= Provide robust initial estimates
= Gradually learn the local parameters




|: OFC-Based L ocal Regression

= Lucas-Kanade constraint: A

= High-breakdown criterion (LMS/LTS)
= Fast deterministic algorithm
Least-squares (LS) initial estimate
Propagate using an LMS-LS procedure
Adaptive outlier resistance
Faster, more stable accuracy

= Estimate scales sg,sg from inliers

[11: Minimizing the Global Energy

= Given Vi
= Calculate Sg:Ss
= Fastest descent by propagation

Generate candidates: Vel (M. il N&V}

E
Replac&s by, if global energy drops

II: OFC-Based Global Optimization

= Givenv,sg, find DV to minimize

SSS ,
o 1o
E(DV)= a {r(e(DV)sg)+gar(IVe+DV,-V, - DV, |s o)}

allsitess i N8

= Solution: Successive Over Relaxation

1 9E 12 8
Unew = Uoig = W———+ ’ T(U):_X2+_2
T(uold) 1Tuold S B S S

Adaptive step size
Initial has dominantly high-freq errors
Fast convergence

Hierarchical Process

= Handle large motions (>2 pixels/frame)
= Limitations:
Sub-sampling, warping and projection errors
May become the accuracy bottleneck

= Step lll directly works on the image data
and is less sensitive to such errors




Overall Algorithm

Level p
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Experiments

Advantages

= Best of Everything
Local OFC
= High-quality initial flow estimates
= Robust local scale estimates
Global OFC
= Improve flow smoothness
Global Matching
= The optimal formulation
= Correct errors caused by poor gradient quality and
hierarchical process
= Results: fast convergence, high accuracy,
simultaneous motion boundary detection

Quantitative M easures

True:Vo =UoVo)' | estimateV =(u,v)
Our error measure
e=(lu- U [1v- VoD, g
Cdf curve of e, Average: g
Barron’s angular error [garon 94]

I VDAV )
& =Da (). Da =arccos L AV D]

Error magnitude:
& =DV |(pixels),| DV [HV - V; |




TS. Translating Squares

= Homebrew, ideal setting, test performance

upper bound

64x64, 1pixel/frame

Groundtruth (cropped),
Our estimate looks the same

TS. Quantitative Comparison
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TS: Flow Estimate Plots

BA S1 (S2is close)

S3 looks the same as the groundtruth.

= S1, S2, S3: results from our Step I, Il, 11l (final)

150x150 (Barron 94)
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150x150 (Barron 94)

DT: Diverging Tree
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DTTT: Motion Discontinuities
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= U-, V-components as intensity images

Ours:

BA:

= IOUTIN I

Boundary




TAXI: Hamburg Taxi Pepsi Can

; s 201x201
(Black)
Ma?( speed: ours
| - 2pix/frame
256x190, (Barron 94) LMS BA
max speed 3.0 pix/frame
Smoothness
BA error
Ours Error map Smoothness error
Traffic

_FG: Flower Garden

512x512
(Nagel)
max speed:
6.0 pix/frame = e
360x240 (Black) BA LMS
Max speed: 7pix/frame

Ours Error map Smoothness error

Error map Smoothness error




Conclusion and Discussion

Contributions (2/2)

= Results
High accuracy
Fast convergence
By product: motion boundaries
= Significance
Foundation for higher-level (model-based) visual
motion analysis

Methodology applicable to other low-level vision
problems

Contributions (1/2)

= Formulation

More complete design, minimal parameter tuning
= Adaptive local scales
= Strength of two error terms automatically balanced

3-frame matching to avoid visibility problems
= Solution: 3-step optimization

Robust initial estimates and scales

Model parameter self-learning

Inherit merits of 3 methods and overcome
shortcomings

FutureWork

= Applications
Non-rigid motion estimation (medical, human)

Higher-level visual motion analysis
= Motion segmentation, model selection
= Occlusion reasoning
= Layered / contour-based representation

Warping w/ discontinuities
= Refinement
Bayesian belief propagation (BBP)
Better global optimization (BBP, Graph cuts etc)




A Motion-Based Bayesian Approach
to Aerial Point-Target
Detection and Tracking

Image
sequence

TheAlgorithm

Motion-Based
Bayesian
Detection

Measuremen,

Prior

- d
& Covariance

Kalman
- State &
Filter - »>
A Covariance
Tracking

|_Prediction J¢———

= State variable: 2D position and velocity

= Track initialization, termination and

maintenance

TheProblem

= UAV See And Avoid System
= Point target detection and tracking

Motion-Based Bayesian Detection

= Background motion:

Parametric optical flow

Fitting outliers
Motion: 3x3 SSD + fitting

. In%gpendent motion

= Bayesian mode
Augment candidate set

test

Object candidates:

Validate/update motion

F16503

F16502: one target  No target




Experiments

= 1800-frame data:
One target 1x2-3x3
Clutter (ground objects)
Camera wobbling
Low image quality
= Results
Target in track since 2 frame
No false detection
Error: mean=0.88, sd=0.44 pixels

= Show demo
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