

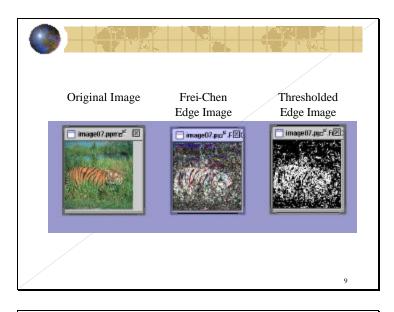
The Case for Statistical Texture

- Segmenting out texels is difficult or impossible in real images.
- Numeric quantities or statistics that describe a texture can be computed from the gray tones (or colors) alone.
- This approach is less intuitive, but is computationally efficient.
- It can be used for both classification and segmentation.

Two Edge-based Texture Measures

1. edgeness per unit area

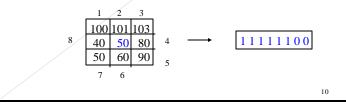
Fedgeness = |{ p | gradient_magnitude(p) ³ threshold}|/N

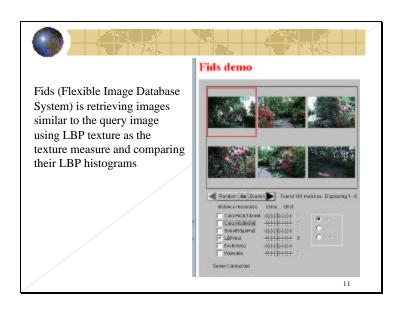

where N is the size of the unit area

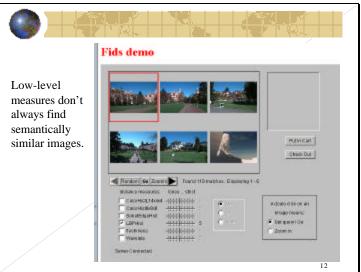
2. edge magnitude and direction histograms

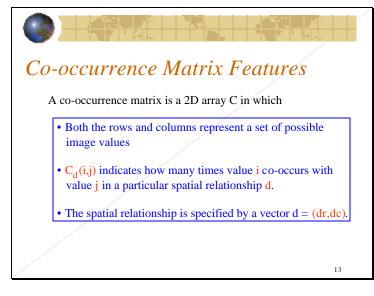
Fmagdir = (Hmagnitude, H direction)

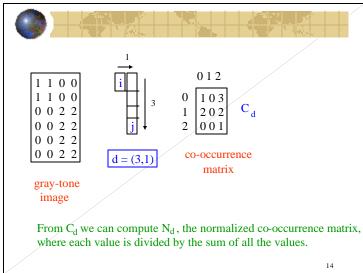
where these are the normalized histograms of gradient magnitudes and gradient directions, respectively.

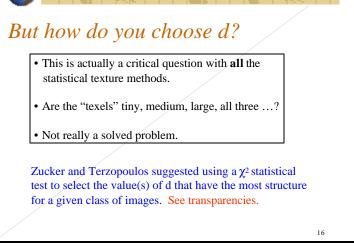

How would you compare two histograms?



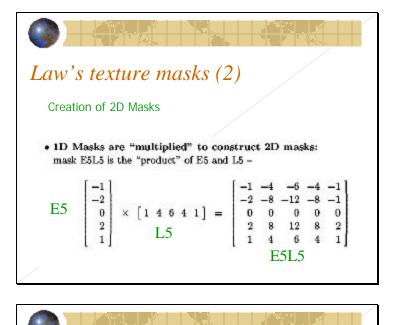

Local Binary Partition Measure For each pixel p, create an 8-bit number b1 b2 b3 b4 b5 b6 b7 b8,


where $b_i = 0$ if neighbor i has value less than or equal to p's value and 1 otherwise.


• Represent the texture in the image (or a region) by the histogram of these numbers.

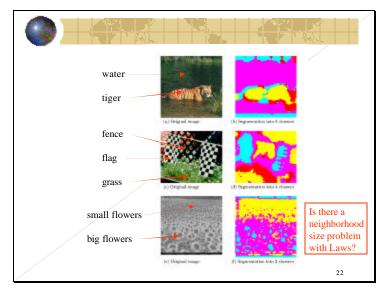


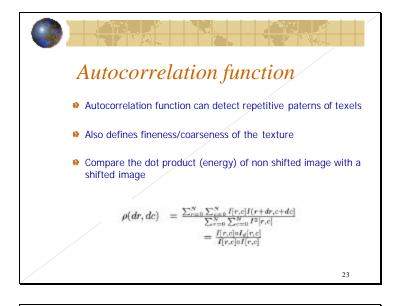
Co-occurrence Features What do these measure? $Energy = \sum_{i} \sum_{j} N_d^2(i, j)$ (7.7) $Entropy = -\sum_{i}\sum_{j} N_d(i, j) log_2 N_d(i, j)$ (7.8) $Contrast = \sum \sum (i-j)^2 N_d(i,j)$ (7.9) $Homogeneity = \sum_{i} \sum_{4} \frac{N_d(i, j)}{1 + |i - j|}$ (7.10) $Correlation ~=~ \frac{\sum_i \sum_j (i-\mu_i) (j-\mu_j) N_d(i,j)}{2}$ (7.11)π,σ, where μ_i , μ_j are the means and σ_i , σ_j are the standard deviations of the row and column sums. Energy measures uniformity of the normalized matrix. 15



- Signal-processing-based algorithms use texture filters applied to the image to create filtered images from which texture features are computed.
- The Laws Algorithm
 - Filter the input image using texture filters.
 - Compute texture energy by summing the absolute value of filtering results in local neighborhoods around each pixel.
 - Combine features to achieve rotational invariance.

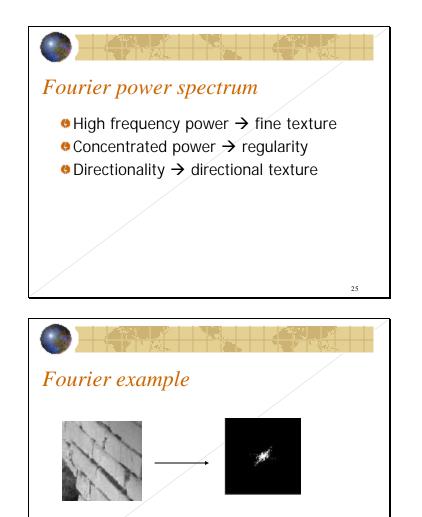
17


Law's texture masks (1) L5 (Level) = 6 4 2 1 **E**5 (Edge) = -1 -2 0 -1 0 2 0 -1 S5 (Spot) = [R5 (Ripple) = [1 4 6 4 1 • (L5) (Gaussian) gives a center-weighted local average • (E5) (gradient) responds to row or col step edges • (S5) (LOG) detects spots • (R5) (Gabor) detects ripples 18



9D feature vector for pixel Subtract mean neighborhood intensity from pixel Dot product 16 5x5 masks with neighborhood 9 features defined as follows: L5E5/E5L5 L5S5/S5L5 L5R5/R5L5 E5S5/S5E5 E5S5/S5E5 E5S5/R5E5 S5S5 S5S5 R5R5

20


eatur	es j	ron	n sa	IMP	ie i	maş	ges		
	5			1		, c	,		
Table 7.2: La	and barrets and		-	- for make				Elman 1	
130Je 7.2; La	ANR PERLIT	te energy	measure	s for map	or sefficient	s of the r	mages of	t tolgare a	.8.
Region	ESES	\$555	R5R5	ESLS	SSLS	RSLS	S5E5	R5E5	RSS
Region	E6E6	\$585 \$4.0	R6R5 807.7	E615 553.7	S5L5 354.4	R5L5 910.6	S5E5 116.3	R5E5 339.2	R558 257.
		\$4.0							257.
Tiger	165.1	\$4.0	807.7	\$\$3.7	354.4	910.6	116.3	339.2	257. 117.
Tiger Water	168.1 68.5	84.0 36.9 113.0	807.7 366.8	553.7 218.7	354.4 149.3	900.6 459.4	116.3 49.6	339.2 159.1	257. 117. 350.
Tiger Water Flags	168.1 68.5 255.1	84.0 36.9 113.0 80.7	807.7 366.8 787.7	553.7 218.7 1057.6	354.4 149.3 702.2	900.6 459.4 2056.3	116.3 49.6 182.4	339.2 159.1 611.5	257. 117. 350. 215.
Tiger Water Flags Feace	165.1 65.5 255.1 189.5 205.5	84.0 36.9 113.0 90.7 103.6	807.7 366.8 787.7 624.3	553.7 218.7 1057.6 701.7	354.4 149.3 702.2 377.5	900.6 459.4 2056.3 903.1	116.3 49.6 182.4 120.6	339.2 159.1 611.5 297.5	257. 117. 350. 215. 323.
Tiger Water Flags Feace Grass	165.1 65.5 255.1 189.5 205.5	84.0 36.9 113.0 80.7 103.6 48.6	807.7 366.8 787.7 624.3 1031.7	553.7 218.7 1057.6 701.7 625.2	354.4 149.3 702.2 377.5 428.3	900.6 459.4 2056.3 803.1 1153.6	116.3 49.6 182.4 120.6 146.0	339.2 159.1 611.5 297.5 427.5	

- **\Rightarrow** Fine texture \rightarrow function drops off rapidly
- Can drop differently for r and c
- Regular textures → function will have peaks and valleys; peaks can repeat far away from [0, 0]
- Random textures → only peak at [0, 0]; breadth of peak gives the size of the texture

24

