3D Models and Matching

- representations for 3D object models
- particular matching techniques
- alignment-based systems
- appearance-based systems

3D Models

- Many different representations have been used to model 3D objects.
- Some are very coarse, just picking up the important features.
- Others are very fine, describing the entire surface of the object.
- Usually, the recognition procedure depends very much on the type of model.

Mesh Models

Mesh models were originally for computer graphics.
With the current availability of range data, they are now used for 3D object recognition.

What types of features can we extract from meshes for matching ?

In addition to matching, they can be used for verification.

Surface-Edge-Vertex Models

SEV models are at the opposite extreme from mesh models.
They specify the (usually linear) features that would be extracted from 2D or 3D data.

They are suitable for objects with sharp edges and corners that are easily detectable and characterize the object.

Generalized-Cylinder Models

Generalized cylinder models include:

- a space curve axis
- a cross section function

standard cylinder

rectangular

 cross sections

This cylinder has - curved axis

- varying cross section
-

1. a set of generalized cylinders
2. the spatial relationships among them

3. the global properties of the object

How can we describe the attributes of the cylinders and of their connections?

Finding GCs in Intensity Data

Generalized cylinder models have been used for several
different classes of objects:

- airplanes (Brooks)
- animals (Marr and Nishihara)
- humans (Medioni)
- human anatomy (Zhenrong Qian)

The 2D projections of standard GCs are

- ribbons

- Superquadrics are parameterized equations that describe solid shapes algebraically.
- They have been used for graphics and for representing some organs of the human body, ie. the heart

3D Deformable Models

In 3D, the snake concept becomes a balloon that expands to fill a point cloud of 3D data.

Matching Geometric Models

 via AlignmentAlignment is the most common paradigm for matching 3D models to either 2D or 3D data. The steps are:

[^0]3D-3D Alignment of Mesh Models to Mesh Data

- Older Work: match 3D features such as 3D edges and junctions or surface patches
- More Recent Work: match surface signatures
- curvature at a point
- curvature histogram in the neighborhood of a point
- Medioni's splashes
- Johnson and Hebert's spin images

The Spin Image Signature

P is the selected vertex.
X is a contributing point of the mesh.

α is the perpendicular distance from X to P 's surface normal.
β is the signed perpendicular distance from X to P's tangent plane.

Spin Images Object Recognition

Offline: Compute spin images of each vertex of the object model(s)
Sample Data from Johnson \& Hebert

2D-3D Alignment

```
- single 2D images of the objects
- 3D object models
    - full 3D models, such as GC or SEV
- view class models representing characteristic
    views of the objects
```


TRIBORS: view class matching of polyhedral objects

[^1]
RIO: Relational Indexing for
 Object Recognition

- RIO worked with more complex parts that could have
- planar surfaces
- cylindrical surfaces
- threads

Object Representation in RIO

- 3D objects are represented by a 3D mesh and set of 2D view classes.
- Each view class is represented by an attributed graph whose nodes are features and whose attributed edges are relationships.
- For purposes of indexing, attributed graphs are stored as sets of 2-graphs, graphs with 2 nodes and 2 relationships.

23

RIO Relationships

- share one arc
- share one line
- share two lines
- coaxial
- close at extremal points
- bounding box encloses / enclosed by

Relational Indexing for Recognition

Preprocessing (off-line) Phase

> | for each model view Mi in the database |
| :--- |
| - encode each 2-graph of Mi to produce an index |
| - store Mi and associated information in the indexed |
| bin of a hash table H |

Matching (on-line) phase

[^2]

Recognition by Appearance

- Appearance-based recognition is a competing paradigm to
features and alignment.
- No features are extracted!
- Images are represented by basis functions (eigenvectors) and their coefficients.
- Matching is performed on this compressed image
representation.

Functional Recognition Procedure

- Segment the range data into surfaces
- Use a bottom-up analysis to determine all functional properties
- From this, construct indexes that are used to rank order the
possible objects and prune away the impossible ones
- Use a top-down approach to fully test for the most highly
ranked categories.
What are the strengths and weaknesses of this approach?

Principle component analysis

- Suppose each data point is N -dimensional Same procedure applies:

$$
\begin{aligned}
\operatorname{SSD}(v) & =\sum_{x}\left\|(x-\bar{x})^{1} \cdot v\right\| \\
& =v^{T} \text { Av where } A=\sum_{x}(x-x)(x-x)
\end{aligned}
$$

The eigenvectors of A define a new coordinate system eigenvector with largest eigenvalue captures the most variation among training vectors \mathbf{x}
eigenvector with smallest eigenvalue has least variation
We can compress the data by only using the top few eigenvectors

Turk and Pentland's Eigenfaces: Training

- Let $\mathrm{F} 1, \mathrm{~F} 2, \ldots, \mathrm{FM}$ be a set of training face images.
Let F be their mean and $\Phi \mathrm{Fi}=\mathrm{Fi}-\mathrm{F}$
- Use principal components to compute the eigenvectors
and eigenvalues of the covariance matrix of the Φ s
- Choose the vector u of most significant M eigenvectors
to use as the basis.
- Each face is represented as a linear combination of eigenfaces
$\mathrm{u}=(\mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3, \mathrm{u} 4, \mathrm{u} 5) ; \mathrm{F} 27=\mathrm{a} 1^{*} \mathrm{u} 1+\mathrm{a} 2 * \mathrm{u} 2+\ldots+\mathrm{a} * * \mathrm{u} 5$

Sample Objects
Columbia Object Recognition Database

Colcman Univzrstry Imace Liarary (col. 20)

$20)$

Extension to 3D Objects

- Murase and Nayar $(1994,1995)$ extended this idea to 3D objects.
- The training set had multiple views of each object, on a dark background.
- The views included multiple (discrete) rotations of the object on a turntable and also multiple (discrete) illuminations.
- The system could be used first to identify the object and then to determine its (approximate) pose and illumination.

Significance of this work

[^3]
Appearance-Based Recognition

- Training images must be representative of the instances of objects to be recognized.
- The object must be well-framed
- Positions and sizes must be controlled.
- Dimensionality reduction is needed.
- It is still not powerful enough to handle general scenes
without prior segmentation into relevant objects.-- my comment
- Hybrid systems (features plus appearance) seem worth pursuing.

[^0]: 1. hypothesize a correspondence between a set of model points and a set of data points
 2. From the correspondence compute a transformation from model to data
 3. Apply the transformation to the model features to produce transformed features
 4. Compare the transformed model features to the image features to verify or disprove the hypothesis
[^1]: - Each object had 4-5 view classes (hand selected)
 - The representation of a view class for matching included: triplets of line segments visible in that class
 - the probability of detectability of each triplet determined by graphics simulation

[^2]: 1. Construct a relational (2-graph) description D for the scene
 2. For each 2-graph G of D

 - encode it, producing an index to access the hash table H
 - cast a vote for each Mi in the associated bin

 3. Select the Mis with high votes as possible hypotheses
 4. Verify or disprove via alignment, using the 3D meshes ${ }_{30}$
[^3]: - The extension to 3D objects was an important contribution.
 - Instead of using brute force search, the authors observed that

 All the views of a single object, when transformed into the eigenvector space became points on a manifold in that space

 - Using this, they developed fast algorithms to find the closest object manifold to an unknown input image.
 - Recognition with pose finding took less than a second.

