Recognizing
Deformable Shapes
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(CSE/EE576 Computer Vision I)

Applications

= Computer Vision:
- Scene analysis
- Industrial Inspection
- Robotics

= Medical Diagnosis:
- Classification and
- Detection of craniofacial deformations.

Main Contribution

= An algorithmic framework based on symbolic
shape descriptors that are robust to

deformations as opposed fo numeric
descriptors that are often tied to specific
shapes.

Goaal

= We are interested in developing algorithms for
recognizing and classifying deformable object
shapes from range data.
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m This is a difficult problem that is relevant in
several application fields.

Basic Idea

m Generalize existing numeric surface
representations for matching 3-D objects
to the problem of identifying shape classes.
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Shape classes: significant
amount of intra-class variability
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Deformed Infants' Skulls

Sagittal Bicoronal
Normal Syhostosis Synostosis

) <
Coronal *’
Sutures
Sagittal **

Occurs when sutures of the cranium fuse prematurely (synostosis).

Alignment -verification

Find correspondences using numeric
signature information.
- Estimate candidate transformations.
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* Verification process
selects the transformatiol

that produces the best
alignment.

Related Literature (2)

= Spherical signatures - Ruiz-Correa et al. ( IEEE
CVPR 2001).

m Shape distributions - Osada et al. (SMT,
2001,2002).

= Reflective symmetry descriptors - Kazhdan et
al. (Algorithmica 2003).

More Craniofacial Deformations
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Related Literature (1)

= This approach has been used very successfully in
industrial machine vision. Relevant investigations
that use numeric signature representations for
matching include:

= Splash representation - Stein and Medioni (IEEE
PAMI, 1992)

= Spin image representation - Johnson and Hebert
(TEEE PAMI, 1999).

Alignment -Verification
Limitations

The approach does not extend well to the problem
of identifying classes of similar shapes. In general:

Numeric shape representations are not robust
to deformations.

There are not exact correspondences between
model and scene.

Objects in a shape class do not align.



Component-Based Methodology Efficient Object Recognition (1)

d ) = Developed spherical spin image representation
umeric Overcomes the limitations (SSI) : computational complexity O(ms).
'gnatures of the alignment-verification
approach .
define L] computational

complexity (n~103, m~10#, s~103).

Describe = Developed compressed SSI representation that

; —~ Recognition And requires O(mk) floats, k~40.
spatial Classification Of q (m )f !

configuration == Deformable Shapes
Symbolic u (PCA) algorithm also requires
Signatures g(md) floats but the proportionality constant is ~10
igger.

ect Recognition (3) Efficient Object Recognition (2)

L1
- Clutter
. - Occlusion

3-D Models

Outline SVMs - Geometry (1)

Input Space
Mathematical Background.
Formalize recognition and classification problems.
Approach and implementation.

Experimental validation: recognition and classification
experiments.

= Discuss future work. ®
)

= Conclude. Separate classes using a hyperplane




SVMs (2)

Feature Space . | Separating Hyperplane

Plane is a function of the inner product of the points in feature space

SVMs - Kernel Trick (4)
F(Y)=Z
F(Y')=Z

w L
Input Space Feature Space

<F(Y ), F(Y »=<Z,Z>=K(Y)Y)

K, kernel function

SVMs successful even in non-separable cases

SVMs (3)
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Input Space Feature Space

SVMs - Kernel Trick (5)

<F(Y ), F(Y »=<Z,Z>=K(Y.,Y)

K, kernel function example:

K(Y.Y') = exp(-g?[[Y-Y'[?)
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Recognition Problem (1)

We are given a set of surface meshes
{C,C,,...,C} which are random samples of two
shape classes C

¢ C .. G




Recognition Problem (2)

The problem is to use the given meshes and
labels to construct an algorithm that
determines whether shape class members are
present in a single view range scene.

Classification Problem (1)

We are given a set of surface meshes
{C,C,,..,.C} which are random samples of two
shape classes C*! and C-!,

where each surface mesh is labeled either by +1
or-1.

Normal Skulls €+ Abnormal Skulls C-!
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Classification Problem (2)

The problem is to use the given meshes and
labels to construct an algorithm that predicts
the label of a new surface mesh C,,,.

Is this skull normal (+1)
or abnormal (-1)?

Assumptions

All shapes are represented as oriented surface
meshes of fixed resolution.

The vertices of the meshes in the fraining set are
in full correspondence.

Finding full correspondences : hard problem yes ...
but it is approachable ( use morphable models
technique: Blantz and Vetter, SIGGRAPH 99; C. R.
Sgglf)on, IJCV, 2000; Allen et al., SIGGRAPH
2003).

Classification Problem (3)

We also consider the case of “missing” information:

Shape class Shape class
of normal of abnormal
heads (+1) heads (-1)

3-D Range Scene
Single View

>
A Are these
a " { heads normal or
utter 5
and Occlusion . abnormal?

Four Key Elements To Our
Approach

Recognition And
Classification Of
Deformable Shapes
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+
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Numeric Signatures

Encode Local
Surface Geometry of
an Object:

2
Components

Symbolic
Signatures

Components

define

Equivalent Numeric
Signatures:
Encode Locall Geometry.
of a Shape Class

Components

Symbolic
Signatures

Component Extraction Example

Selected 8 seed Labeled
points by hand Surface Mesh

Region
Growing

Detected
components on a
training sample

Grow one region at the time
(get one detector
per component)

Numeric Signatures: Spin Images
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Spin images for point £
Rich set of surface shape descriptors.

Their spatial scale can be modified to include local and
non-local surface features.

Representation is robust to scene clutter and occlusions.

How To Extract Shape Class

?
Components: Training Set

Component
Detector

Grown components
around seeds

How To Combine Component
Information?

Extracted components on test samples

Note: Numeric signatures are invariant to mirror symmetry;
our approach preserves such an invariance.




Symbolic Signatures
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Architecture
of
Classifiers
Encode Geometrical
Relationships
Among Components

Symbolic Signature
Construction

Normal
Project labels

to tangent plane

Coordinate system b 4 3
defined up to a rotation
[/
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Architecture of Classifiers

Learns Components
And Their
Geomefric

Relatiionships

Symbolic Signature

Labeled

Surface Mesh Symbolic

Signature at P
Encode
Geometric
Configuration
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Matrix storing
component
labels

Symbolic Signatures Are Robust
To Deformations

A A

Relative position of components
s stable across deformations:
experimental evidence

Proposed Architecture
(Classification Example)

Input Identify - Class
Components Label
-1
(Abnormal)
Surface Two classification stages

Mesh




At Classification Time (1)L »
apeled
Surface Surface Mesh

Mesh

Multi-way — /

classifier

Bank of Assigns
Component = Component

Detectors Labels

Identify Components

Finding Critical Points On Test
Samples

Critical Point
] |

Margin associated Confidence !

with the component Level 4
o %

detector classifiers 0 I

Experimental Validation

Recognition Tasks: 4 (T1 - T4)
Classification Tasks: 3 (T5 - T7)
No. Experiments: 5470

Rotary Table Se’rup

Classification

At Classification Time (2)

Labeled
Surface Mesh

Symbolic pattern
for components
1,24

Two detectors

Symbolic pattern / h -
for components —
56,8

-1

Architecture Implementation

m ALL our classifiers are (off-the-shelf) v-
Support Vector Machines (v-SVMs)
(Scholkopf et al., 2000 and 2001).

= Component (and symbolic signature)
detectors are one-class classifiers.

= Component label assignment: performed
with a multi-way classifier that uses
pairwise classification scheme.

m Gaussian kernel.

Shape Classes
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Enlarging Training Sets Using Virtual
Samples
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Task 1: Recognizing Single

Objects (1)

= No. Shape classes: 9.

= Training set size: 400 meshes.

= Testing set size: 200 meshes.

= No. Experiments: 1960.

= No. Component detectors:3.

= No. Symbolic signature detectors: 1.

= Numeric signature size: 40x40.

= Symbolic sighature size: 20x20.

= No clutter and occlusion.

Tasks 2-3: Recognition In
Complex Scenes (1)

= No. Shape classes: 3.

= Training set size: 400 meshes.

s Testing set size: 200 meshes.

= No. Experiments: 1200.

= No. Component detectors:3.

= No. Symbolic sighature detectors: 1.
= Numeric signature size: 40x40.

= Symbolic signature size: 20x20.

= T2 - low clutter and occlusion.

Other Approaches

= Tried standard alignment-verification.

= Alignment-verification with PCA.

= However, no systematic comparison was
performed due to poor performance.

= Existing methods for classifying shapes
do not use range data.
P. Golland, NIPS 2001, J. Matrin et al.
TEEE PAMI 1998.

Task 1: Recognizing Single
Objects (2)
= Snowman: 93%. = Human head: 97.7%.
m Rabbit: 92%. n
= Dog: 89%.
m Cat: 85.5%.
m Cow: 92%.
m Bear: 94%.
m Horse: 92.7%.

Recognition rates (true positives)

(No clutter, no occlusion, complete models)

Task 2-3: Recognition in
Complex Scenes (2)

Shape True False True False
Class |Positives |Positives |Positives | Positives
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Task 2-3: Recognition in
Complex Scenes (3)
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Task 4: Recognizing Human
Heads (2)

% Clutter < 40 % Occlusion < 40

Task 4: Recognizing Human
Heads (1)

= No. Shape classes: 1.
= Training set size: 400 meshes.
= Testing set size: 250 meshes.

= No. Experiments: 710.

= No. Component detectors:8.

= No. Symbolic signature detectors: 2.
= Numeric signature size: 70x70.

= Symbolic signature size: 12x12.
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FP rate: ~1%,

Task 5: Classifying Normal vs.

Abnormal Human Heads (1)
= No. Shape classes: 6.
= Training set size: 400 meshes.
= Testing set size: 200 meshes.

= No. Experiments: 1200.

= No. Component defectors:3.

= No. Symbolic signature detectors: 1.
= Numeric sighature size: 50x50.

= Symbolic signature size: 12x12.

Task 4: Recognizing Human Heads (3)
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Task 5: Classifying Normal vs.
Abnormal Human Heads (1)

Shape Classification —‘h Normal
Classes Accuracy %
Normal vs.
Abnormal 1 Abnormal 4 2
Normal vs.
Abnormal 2 P).}
Abnormal 1 vs. 3 “
Abnormal 1 vs. 4 - 3
{
Abnormal 1 vs. 5 - =
65/ 35% 50/ 50%  25%-75%

(convex combinations
Full models of Normal and Abnormal 1)

Five Cases
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Task 6: Classifying Normal vs. Abnormal

Human Heads In Complex Scenes(1)

= No. Shape classes: 2.
= Training set size: 400 meshes.
m Testing set size: 200 meshes.

= No. Experiments: 1200.

= No. Component detectors:3.

= No. Symbolic signature detectors: 1.
= Numeric signature size: 100x100.

= Symbolic signature size: 12x12.

Task 7: Classifying Normal vs.
Abnormal Neurocranium (1)

= No. Shape classes: 2.

m Training set size: 400 meshes.

m Testing set size: 200 meshes.

= No. Experiments: 2200.

= No. Component detectors:3.

= No. Symbolic signature detectors: 1.
= Numeric signature size: 50x50.

= Symbolic signature size: 15x15.

Main Contributions (1)

= A novel symbolic signature representation

of deformable shapes that is robust o
intra-class variability and missing
information, as opposed to a numeric
representation which is often tied toa
specific shape.

= A novel kernel function for quantifying
symbolic signature similarities.

Task 6: Classifying Normal vs. Abnormal
Human Heads In Complex Scenes(1)
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Classes Accuracy % -

Range scenes - single vi
Normal vs. 88 ange scenes - single view
Abnormal 1 -

Clutter < 15%
and occlusion < 50%

Task 7: Classifying Normal vs.
Abnormal Neurocranium (2)

/
100 Experiments o
Shape Classificatio \
Classes n Accuracy Normal  Abnormal
% (sagittal synostosis )
Normal vs. £ *
Abnormal € :3 fig
3 e @

No clutter and occlusion

TR (o Superimposed
\j ( J models

Main Contributions (2)

m A region growing algorithm for learning
shape class components.

m A novel architecture of classifiers for
abstracting the geometry of a shape class.

= A validation of our methodology in a set of
large scale recognition and classification
experiments aimed at applications in scene
analysis and medical diaghosis.
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Main Contributions (3)

= Our approach:

- Is general can be applied to a variety of
shape classes.

- Is robust to clutter and occlusion

- It Works in practice

- Is a step forward in 3-D object recognition
research.

Future Work (2)

= Need to find the break points.

= Investigate semi-automatic selection of seed
points and critical points. At least, provide
guidelines.

= Combine our approach with the alignment-
verification technique.

= Simultaneous training of all classification
stages.

Spare slides

Future Work (1)

Encouraging results but need to make a more
extensive quantification in order to characterize
the algorithm wrt:

sensor noise and mesh resolution,

numeric and symbolic signature parameters,
intra-class variability.

Now your questions ...

So What Is A Component?

» Classification function, an outlier detector (one-class
SVM) that defines two half-spaces in feature space:

Outliers on this side
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Enlarging Training Sets Using Virtual
Samples

Morphs
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Complexity (Worst Case)

= Numeric (symbolic) signature
construction:

m Bank of detfectors:
= Label Assigner:

Where:
- number of scene points: ~10#
- sighature size: ~102-103
- number of detectors: ~10
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