Recognizing Deformable Shapes

Salvador Ruiz Correa (CSE/EE576 Computer Vision I)

Goal

 We are interested in developing algorithms for recognizing and classifying deformable object shapes from range data.

Applications

- Computer Vision:
 - Scene analysis
 - Industrial Inspection
 - Robotics
- Medical Diagnosis:
 - Classification and
 - Detection of craniofacial deformations.

Basic Idea

 Generalize existing numeric surface representations for matching 3-D objects to the problem of identifying shape classes.

Main Contribution

 An algorithmic framework based on symbolic shape descriptors that are robust to deformations as opposed to numeric descriptors that are often tied to specific shapes.

Related Literature (1)

 This approach has been used very successfully in industrial machine vision. Relevant investigations that use numeric signature representations for matching include:

- Splash representation Stein and Medioni (IEEE PAMI, 1992)
- Spin image representation Johnson and Hebert (IEEE PAMI, 1999).

Related Literature (2)

- Spherical signatures Ruiz-Correa et al. (IEEE CVPR 2001).
- Shape distributions Osada et al. (SMI, 2001,2002).
- Reflective symmetry descriptors Kazhdan et al. (Algorithmica 2003).

Alignment-Verification Limitations

The approach does not extend well to the problem of identifying classes of similar shapes. In general:

- Numeric shape representations are not robust to deformations.
- There are not exact correspondences between model and scene.

• Objects in a shape class do not align.

Efficient Object Recognition (1)

- Developed spherical spin image representation (SSI): computational complexity O(ms).
- Standard spin image (SI): computational complexity O(nmS) (n~10³, m~10⁴, s~10³).
- Developed compressed SSI representation that requires O(mk) floats, k~40.
- Standard SIC (PCA) algorithm also requires O(md) floats but the proportionality constant is ~10 bigger.

Outline

- Mathematical Background.
- Formalize recognition and classification problems.
- Approach and implementation.
- Experimental validation: recognition and classification experiments.
- Discuss future work.
- Conclude.

Architecture Implementation

- ALL our classifiers are (off-the-shelf) v-Support Vector Machines (v-SVMs) (Schölkopf et al., 2000 and 2001).
- Component (and symbolic signature) detectors are one-class classifiers.
- Component label assignment: performed with a multi-way classifier that uses pairwise classification scheme.
- Gaussian kernel.

Other Approaches

- Tried standard alignment-verification.
- Alignment-verification with PCA.
- However, no systematic comparison was performed due to poor performance.
- Existing methods for classifying shapes do not use range data.
- P. Golland, NIPS 2001, J. Matrin et al. IEEE PAMI 1998.

Task 1: Recognizing Single Objects (1)

- No. Shape classes: 9.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1960.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 40x40.
- Symbolic signature size: 20x20.
- No clutter and occlusion.

(No clutter, no occlusion, complete models)

Tasks 2-3: Recognition In Complex Scenes (1)

- No. Shape classes: 3.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 40×40.
- Symbolic signature size: 20x20.
- T2 low clutter and occlusion.

Task 2-3: Recognition in Complex Scenes (2)

Shape	True	False	True	False
Class	Positives	Positives	Positives	Positives
Snowmen	91%	31%	87.5%	28%
Rabbit	90.2%	27.6%	84.3%	24%
Dog	89,6%	34.6%	88,12%	22.1%
Task 2			Task 3	

Task 4: Recognizing Human Heads (1) No. Shape classes: 1. Training set size: 400 meshes. Testing set size: 250 meshes. No. Experiments: 710. No. Component detectors:8. No. Symbolic signature detectors: 2. Numeric signature size: 70x70. Symbolic signature size: 12x12.

- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 50x50.
- Symbolic signature size: 12x12.

Task 6: Classifying Normal vs. Abnormal Human Heads In Complex Scenes(1)

- No. Shape classes: 2.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 1200.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 100x100.
- Symbolic signature size: 12x12.

Shape
Classification
Accuracy %Classification
Accuracy %Normal vs.
Abnormal 188Clutter < 15%
and occlusion < 50%</td>600

Task 7: Classifying Normal vs. Abnormal Neurocranium (1)

- No. Shape classes: 2.
- Training set size: 400 meshes.
- Testing set size: 200 meshes.
- No. Experiments: 2200.
- No. Component detectors:3.
- No. Symbolic signature detectors: 1.
- Numeric signature size: 50x50.
- Symbolic signature size: 15x15.

Main Contributions (1)

- A novel symbolic signature representation of deformable shapes that is robust to intra-class variability and missing information, as opposed to a numeric representation which is often tied to a specific shape.
- A novel kernel function for quantifying symbolic signature similarities.

Main Contributions (2)

- A region growing algorithm for learning shape class components.
- A novel architecture of classifiers for abstracting the geometry of a shape class.
- A validation of our methodology in a set of large scale recognition and classification experiments aimed at applications in scene analysis and medical diagnosis.

Main Contributions (3)

- Our approach:
- Is general can be applied to a variety of shape classes.
- Is robust to clutter and occlusion
- It Works in practice
- Is a step forward in 3-D object recognition research.

Future Work (1)

- Encouraging results but need to make a more extensive quantification in order to characterize the algorithm wrt:
- sensor noise and mesh resolution,
- numeric and symbolic signature parameters,
- intra-class variability.

Future Work (2)

- Need to find the break points.
- Investigate semi-automatic selection of seed points and critical points. At least, provide guidelines.
- Combine our approach with the alignmentverification technique.
- Simultaneous training of all classification stages.

Thanks!

Now your questions ...

Complexity (Worst Case) Numeric (symbolic) signature construction: O(ns) Bank of detectors: O(nsc) Label Assigner: O(nsc²) Where: n - number of scene points: ~10⁴ s - signature size: ~10²-10³ c - number of detectors: ~10

ectrical Engineering