Image Segmentation

Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels.

Example 1: Regions

1. into regions, which usually cover the image
2. into linear structures, such as

- line segments
- curve segments

3. into 2D shapes, such as

- circles
- ellipses
ribbons (long, symmetric regions)

Example 3:
Lines and Circular Arcs

Region Segmentation:
Segmentation Criteria

So

So all we have to do is define and implement the similarity predicate
A segmentation is a partition of an image I into
a set of regions S satisfying:

1. $\cup \mathrm{Si}=\mathrm{S}$	Partition covers the whole image.
2. $\mathrm{Si} \cap \mathrm{Sj}=\phi, \mathrm{i} \neq \mathrm{j}$	No regions intersect.
3. $\forall \mathrm{Si}, \mathrm{P}(\mathrm{Si})=$ true	Homogeneity predicate is satisfied by each region.
4. $\mathrm{P}(\mathrm{Si} \cup \mathrm{Sj})=$ false, $\mathrm{i} \neq \mathrm{j}, \mathrm{Si}$ adjacent Sj Union of adjacent regions does not satisfy it.	

But, what do we want to be similar in each region?

Is there any property that will cause the regions to be meaningful objects?

Main Methods of Region
Segmentation

1. Region Growing
2. Clustering
3. Split and Merge

Region Growing

Region growing techniques start with one pixel of a potential region and try to grow it by adding adjacent pixels till the pixels being compared are too disimilar.

- The first pixel selected can be just the first unlabeled pixel in the image or a set of seed pixels can be chosen from the image.
- Usually a statistical test is used to decide which pixels can be added to a region.

The RGGROW Algorithm

The RGGROW Statistical Test

- Let R be the N pixel region so far and P be a neighboring pixel with gray tone y.
- Define the mean X and scatter S^{2} (sample variance) by

```
X = 1/N \sum I(r,c)
    (r,c)\inR
    S S}=\underset{(r,c)\inR}{1/N \sum
```

The T statistic is defined by

$$
\mathrm{T}=\left[\begin{array}{c}
(\mathrm{N}-1)^{*} \mathrm{~N} \\
(\mathrm{~N}+-------\overline{\mathrm{X}})^{2} / \mathrm{S}^{2}
\end{array}\right]^{1 / 2}
$$

It has a $\mathrm{T}_{\mathrm{N}-1}$ distribution if all the pixels in R and the test pixel y are independent and identically distributed normals (IID assumption) .

Decision and Update

- For the T distribution, statistical tables give us the probability $\operatorname{Pr}(\mathrm{T} \leq \mathrm{t})$ for a given degrees of freedom and a confidence level. From this, pick suitable threshold t .
- If the computed $\mathrm{T} \leq \mathrm{t}$ for desired confidence level, add y to region R and update $\overline{\mathrm{X}}$ and S^{2}.
- If T is too high, the value y is not likely to have arisen from the population of pixels in R. Start a new region.

RGGROW Example
image

Not great!
segmentation

What do you think this would
do on wallpaper texture?

Clustering

Some Clustering Methods

- There are K clusters C1,..., CK with means m1,..., mK.

- K-means Clustering and Variants
- Isodata Clustering
- Histogram-Based Clustering and Recursive Variant
- Graph-Theoretic Clustering

- Out of all possible partitions into K clusters,
- Graph-Theoretic Clustering

$$
\mathrm{D}=\sum_{\mathrm{k}=1}^{\mathrm{K}} \sum_{\mathrm{xi} \in \mathrm{Ck}}\|\mathrm{xi}-\mathrm{mk}\|^{2} .
$$

$$
\text { choose the one that minimizes } \mathrm{D} \text {. }
$$

Why don't we just do this?
If we could, would we get meaningful objects?

K-Means Example 2

Meng-Hee Heng's K-means Variant

> 1. Pick 2 points Y and Z that are furthest apart in the measurement space and make them initial cluster means.
> 2. Assign all points to the cluster whose mean they are closest to and recompute means.
> 3. Let d be the max distance from each point to its cluster mean and let X be the point with this distance.
> 4. Let q be the average distance between each pair of means.
> 5. If $\mathrm{d}>\mathrm{q} / 2$, make X a new cluster mean.
> 6. If a new cluster was formed, repeat from step 2 .

I sodata Clustering

1. Select several cluster means and form clusters.
2. Split any cluster whose variance is too large.
3. Group together clusters that are too small.
4. Recompute means.
5. Repeat till 2 and 3 cannot be applied.

We used this to cluster normal vectors in 3D data.

Ohlander's Recursive HistogramBased Clustering

- color images of real indoor and outdoor scenes
- starts with the whole image
- selects the R, G, or B histogram with largest peak and finds clusters from that histogram
- converts to regions on the image and creates masks for each
- pushes each mask onto a stack for further clustering

Minimal Cuts

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. Each edge (u,v) has a weight $\mathrm{w}(\mathrm{u}, \mathrm{v})$ that represents the similarity between u and v .
- Graph G can be broken into 2 disjoint graphs with node sets A and B by removing edges that connect these sets.
- Let $\operatorname{cut}(A, B)=\sum \quad w(u, v)$.
- One way to segment G is to find the minimal cut.

Normalized Cut

Minimal cut favors cutting off small node groups,
so Shi proposed the normalized cut.

$$
\begin{array}{|cc|}
\hline \text { Ncut(A, B) }=\begin{array}{cc}
\operatorname{cut}(\mathrm{A}, \mathrm{~B}) \\
\text { asso(A,------- })
\end{array} & \begin{array}{c}
\text { cut(A, B) } \\
\text { asso(B,------- })
\end{array}
\end{array} \begin{gathered}
\text { normalized } \\
\text { cut }
\end{gathered}
$$

Example Normalized Cut

How Shi used the procedure

Shi defined the edge weights $\mathrm{w}(\mathrm{i}, \mathrm{j})$ by
$\mathrm{w}(\mathrm{i}, \mathrm{j})=\mathrm{e}^{\|\mathrm{F}(\mathrm{i})-\mathrm{F}(\mathrm{j})\|_{2} / \sigma \mathrm{II} * \begin{cases}\mathrm{e}^{\|\mathrm{X}(\mathrm{i})-\mathrm{X}(\mathrm{j})\|_{2} / \sigma \mathrm{X}} & \text { if }\|\mathrm{X}(\mathrm{i})-\mathrm{X}(\mathrm{j})\|_{2}<r \\ 0 & \text { otherwise }\end{cases} }$
where $\mathrm{X}(\mathrm{i})$ is the spatial location of node i
$F(i)$ is the feature vector for node I
which can be intensity, color, texture, motion.
The formula is set up so that $w(i, j)$ is 0 for nodes that are too far apart.

Lines and Arcs
 Segmentation

In some image sets, lines, curves, and circular arcs are more useful than regions or helpful in addition to regions.

Lines and arcs are often used in

- object recognition
- stereo matching
- document analysis

Edge Detection

Basic idea: look for a neighborhood with strong signs of change.

Differential Operators

Differential operators

- attempt to approximate the gradient at a pixel via masks
- threshold the gradient to select the edge pixels
- neighborhood size
$\begin{array}{llll}81 & 82 & 26 & 24\end{array}$
$\begin{array}{llll}82 & 33 & 25 & 25\end{array}$

81	82	26	24

- how to detect change

Marr/Hildreth Operator

- First smooth the image via a Gaussian convolution
- Apply a Laplacian filter (estimate 2nd derivative)
- Find zero crossings of the Laplacian of the Gaussian

This can be done at multiple resolutions.

Canny Edge Detector

- Smooth the image with a Gaussian filter.
- Compute gradient magnitude and direction at each pixel of the smoothed image.
- Zero out any pixel response \leq the two neighboring pixels on either side of it, along the direction of the gradient.
- Track high-magnitude contours.
- Keep only pixels along these contours, so weak little segments go away

Best Canny on Blocks from Hw1

Finding Line and Curve Segments from Edge Images

Given an edge image, how do we find line and arc segments?

Method 1: Tracking
Use masks to identify the following events:

1. start of a new segment
2. interior point continuing a segment
3. end of a segment
4. junction between multiple segments
5. corner that breaks a segment into two

Hough Transform

- The Hough transform is a method for detecting lines or curves specified by a parametric function.
- If the parameters are p1, p2, .. pn, then the Hough procedure uses an n-dimensional accumulator array in which it accumulates votes for the correct parameters of the lines or curves found on the image.

The ORT package uses a fancier corner finding approach.

Finding Straight Line Segments

Procedure to Accumulate Lines

- Set accumulator array A to all zero. Set point list array PTLIST to all NIL.
- For each pixel (R,C) in the image \{
- compute gradient magnitude GMAG
- if GMAG > gradient_threshold \{
- compute quantized tangent angle THETAQ
- compute quantized distance to origin DQ
- increment A(DQ,THETAQ)
- update PTLIST(DQ,THETAQ) \} \}

Finding Circles
Equations:

$$
\begin{array}{|l|}
\hline \mathrm{r}=\mathrm{r} 0+\mathrm{d} \sin \theta \\
\mathrm{c}=\mathrm{c} 0+\mathrm{d} \cos \theta \\
\hline
\end{array}
$$

r, c, d are parameters
Main idea: The gradient vector at an edge pixel points to the center of the circle.

Why it works

Filled Circle:
Outer points of circle have gradient direction pointing to center.

Circular Ring:
Outer points gradient towards center.
Inner points gradient away from center.

The points in the away direction don't accumulate in one bin!

Procedure to Accumulate Circles

The Burns Line Finder

- Set accumulator array A to all zero.

1. Compute gradient magnitude and direction at each pixel.
2. For high gradient magnitude points, assign direction labels to two symbolic images for two different quantizations.
3. Find connected components of each symbolic image.

- Each pixel belongs to 2 components, one for each symbolic image.
- if GMAG > gradient_threshold \{

Gompute IHEIA(R,C,D

- Each pixel votes for its longer component.

C0 := C - D* $\sin ($ THETA $)$

- Each component receives a count of pixels who voted for it.
- The components that receive majority support are selected.

See Transparencies

