

Point Representation and
 Transformations

Normal Coordinates for a 2D Point

$$
P=[x, y]^{t}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Homogeneous Coordinates
$\mathrm{P}=[\mathrm{sx}, \mathrm{sy}, \mathrm{s}]^{\mathrm{t}}$ where s is a scale factor

2D Model and 3 Matching
 Images of a Boeing Airplane Part

Computing Affine Transformations
between Sets of Matching Points

A More Robust Approach

Using only 3 points is dangerous, because if even one is off, the transformation can be far from correct.

Instead, use many ($\mathrm{n}=10$ or more) pairs of matching control points to determine a least squares estimate of the six parameters of the affine transformation.
Given 3 matching pairs of points, the affine transformation can be computed through solving a simple matrix equation.
Error(a11, a12, a13, a21, a22, a23) =

$$
\left(\begin{array}{ccc}
\mathrm{u} 1 & \mathrm{u} 2 & \mathrm{u} 3 \\
\mathrm{v} 1 & \mathrm{v} 2 & \mathrm{v} 3 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
\text { a11 } & \text { a12 } & \text { a13 } \\
\text { a21 } & \text { a22 } & \text { a23 } \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\mathrm{x} 1 & \mathrm{x} 2 & \mathrm{x} 3 \\
\mathrm{y} 1 & \mathrm{y} 2 & \mathrm{y} 3 \\
1 & 1 & 1
\end{array}\right)
$$

$$
\begin{array}{cc}
\sum_{j=1, n} & \begin{array}{l}
\left((a 11 * x j+a 12 * y j+a 13-u j)^{2}+\right. \\
\left.(a 21 * x j+a 22 * y j+a 23-v j)^{2}\right)
\end{array} \\
\left(\begin{array}{l}
\text { a }
\end{array}\right. \\
\hline
\end{array}
$$

The Equations to Solve

Local-Feature-Focus Method

- Each model has a set of features (interesting points).

LFF Algorithm

Let G be the set of detected image features.
Let $F m$ be focus features of the model.
Let $S(f)$ be the nearby features for feature f.

- The focus features are the particularly detectable features, usually representing several different areas of the model.

Each focus feature has a set of nearby features that can be used, along with the focus feature, to compute the transformation.

for each focus feature Fm
for each image feature Gi of the same type as Fm

1. find the maximal subgraph Sm of $\mathrm{S}(\mathrm{Fm})$ that matches a subgraph Si of $\mathrm{S}(\mathrm{Gi})$.
2. Compute transformation T that maps the points of each feature of Sm to the corresponding one of Si.
3. Apply T to the line segments of the model.
4. If enough transformed segments find evidence in the image, return(T)

Pose Clustering

Let T be a transformation aligning model M with image object C
The pose of object O is its location and orientation, defined by 1

The idea of pose clustering is to compute lots of possible pose transformations, each based on 2 points from the model and
2 hypothesized corresponding points from the image.*
Then cluster all the transformations in pose space and try to verify the large clusters.

* This is not a full affine transformation, just RST.

Pose Clustering

Correct Match: mapping = \{ (1,A), (2,B), (3,C) \}
There will be some votes for (B,C) -> $(4,5)$, (B, C)-> $(6,7)$ etc.

Affine Transform

If x is represented in affine coordinates (ξ, η).
$\mathrm{x}=\xi(\mathrm{e} 10-\mathrm{e} 00)+\eta(\mathrm{e} 01-\mathrm{e} 00)+\mathrm{e} 00$
and we apply affine transform T to point x, we get
$\mathrm{Tx}=\xi(\mathrm{Te} 10-\mathrm{Te} 00)+\eta(\mathrm{Te} 01-\mathrm{Te} 00)+\mathrm{Te} 00$
In both cases, x has the same coordinates (ξ, η).

2D Object Recognition Paradigms

- We can formalize the recognition problem as finding
a mapping from model structures to image structures.
- Then we can look at different paradigms for solving it.
- interpretation tree search
- discrete relaxation
- continuous relaxation

Tree Search Algorithm

2. Discrete Relaxation

- Discrete relaxation is an alternative to (or addition to)
the interpretation tree search
- Relaxation is an iterative technique with polynomial
time complexity.
- Relaxation uses local constraints at each iteration.
- It can be implemented on parallel machines.

3. Relational Distance Matching

- A fully consistent labeling is unrealistic.
- An image may have missing and extra features;
required relationships may not always hold.
- Instead of looking for a consistent labeling,
we can look for the best mapping from P to L,
the one that preserves the most relationships.

40

Preliminary Definitions

Def: A relational description DP is a sequence of relations over a set of primitives P .

Example of Composition

$\mathrm{R}^{\circ} \mathrm{f}=\{(\mathrm{b} 1, \ldots, \mathrm{bn}) \mid(\mathrm{a} 1, \ldots, \mathrm{an})$ is in R and $\mathrm{f}(\mathrm{ai})=(\mathrm{bi}), \mathrm{i}=1, \mathrm{n}\}$

- For any relation R , the composition $\mathrm{R}^{\circ} \mathrm{f}$ is given by
$R^{n} f=\{(b 1, \ldots, b n) \mid(a 1, \ldots, a n)$ is in R and $f(a i)=(b i), i=1, n\}$

Relational Distance Definition

Let DA be a relational description over set A,
DB be a relational description over set B,
and $\mathrm{f}: \mathrm{A}->\mathrm{B}$.

- The structural error of f for Ri in DA and Si in DB is
$E_{S}^{i}(f)=\left|R i^{\circ} f-S i\right|+\left|S i^{\circ} f^{-1}-R i\right|$
- The total error of f with respect to DA and DB is

$$
E(f)=\sum_{i=1}^{1} E{ }_{S}^{i}(f)
$$

- The relational distance $\mathrm{GD}(\mathrm{DA}, \mathrm{DB})$ is given by

$$
\mathrm{GD}(\mathrm{DA}, \mathrm{DB})=\min _{\mathrm{f}} \mathrm{E}(\mathrm{f})
$$

Example

What is the best mapping?
What is the error of the best mappin

44

Variations

> - Different weights on different relations
> - Normalize error by dividing by total possible
> - Attributed relational distance for attributed relations
> - Penalizing for NIL mappings

4. Continuous Relaxation

[^0]
[^0]: - In discrete relaxation, a label for a unit is either possible or not.
 - In continuous relaxation, each (unit, label) pair has a probability.
 - Every label for unit i has a prior probability.
 - A set of compatibility coefficients $\mathrm{C}=\{\mathrm{cij}\}$ gives the influence that the label of unit i has on the label of unit j.
 - The relationship R is replaced by a set of unit/label compatibilities where rij($1,1^{\prime}$) is the compatibility of label 1 for part i with label l' for part j
 - An iterative process updates the probability of each label for each unit in terms of its previous probability and the compatibilities of its current labels and those of other units that influence it.

