Interest Operators

- Find "interesting" pieces of the image
- Multiple possible uses
 - image matching
 - stereo pairs
 - tracking in videos
 - creating panoramas
 - object recognition

Goal: Local invariant photometric descriptors -

Local : robust to occlusion/clutter + no segmentation *Photometric* : distinctive *Invariant* : to image transformations + illumination changes

History - Matching

Matching based on correlation alone Matching based on line segments

 \Rightarrow Not very discriminating (why?)

 \Rightarrow Solution : matching with interest points & correlation

[A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry,

Z. Zhang, R. Deriche, O. Faugeras and Q. Luong,

Artificial Intelligence 1995]

Approach

- Extraction of interest points with the Harris detector
- Comparison of points with cross-correlation
- Verification with the fundamental matrix (later in the course)

Harris detector

Interest points extracted with Harris (~ 500 points)

Cross-correlation matching

Initial matches (188 pairs)

Global constraints

Robust estimation of the fundamental matrix

99 inliers

89 outliers $\frac{7}{7}$

Summary of the approach

- Very good results in the presence of occlusion and clutter
 - local information
 - discriminant greyvalue information
 - robust estimation of the global relation between images
 - for limited view point changes
- Solution for more general view point changes
 - wide baseline matching (different viewpoint, scale and rotation)
 - local invariant descriptors based on greyvalue information

History - Recognition

Problems : occlusion, clutter, image transformations, distinctiveness

⇒ Solution : recognition with local photometric invariants
[Local greyvalue invariants for image retrieval,
C. Schmid and R. Mohr,
PAMI 1997]

Approach

- 1) Extraction of interest points (characteristic locations)
- 2) Computation of local descriptors
- 3) Determining correspondences
- 4) Selection of similar images

Interest points

Geometric features

repeatable under transformations

2D characteristics of the signal → high informational content

Comparison of different detectors [Schmid98] → Harris detector

Harris detector

Based on the idea of auto-correlation

Important difference in all directions => interest point $_{12}$

Background: Moravec Corner Detector

- take a window w in the image
- shift it in four directions (1,0), (0,1), (1,1), (-1,1)
- compute a difference for each
- compute the min difference at each pixel
- local maxima in the min image are the corners

 $\mathbf{E}(\mathbf{x},\mathbf{y}) = \sum_{\mathbf{u},\mathbf{v} \text{ in } \mathbf{w}} \mathbf{w}(\mathbf{u},\mathbf{v}) |\mathbf{I}(\mathbf{x}+\mathbf{u},\mathbf{y}+\mathbf{v}) - \mathbf{I}(\mathbf{u},\mathbf{v})|^2$

Shortcomings of Moravec Operator

- Only tries 4 shifts. We'd like to consider "all" shifts.
- Uses a discrete rectangular window. We'd like to use a smooth circular (or later elliptical) window.
- Uses a simple min function. We'd like to characterize variation with respect to direction.

Result: Harris Operator

Harris detector

Auto-correlation function for a point (x, y) and a shift $(\Delta x, \Delta y)$

$$f(x, y) = \sum_{(x_k, y_k) \in W} (I(x_k, y_k) - I(x_k + \Delta x, y_k + \Delta y))^2$$

Discrete shifts can be avoided with the auto-correlation matrix

with
$$I(x_k + \Delta x, y_k + \Delta y) = I(x_k, y_k) + (I_x(x_k, y_k) - I_y(x_k, y_k)) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$

$$f(x, y) = \sum_{(x_k, y_k) \in W} \left(\begin{pmatrix} I_x(x_k, y_k) - I_y(x_k, y_k) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \right)^2$$

Harris Math Manipulation

$$\begin{split} f(x,y) &= \sum_{(x_k,y_k)\in W} (I(x_k,y_k) - I(x_k + \Delta x, y_k + \Delta y))^2 \\ &= \sum_{(x_k,y_k)\in W} (I(x_k,y_k) - [I(x_k,y_k) + (I_x(x_k,y_k) I_y(x_k,y_k)) \left(\frac{\Delta x}{\Delta y}\right)])^2 \\ &= \sum_{(x_k,y_k)\in W} (I(x_k,y_k) - I(x_k,y_k) - (I_x(x_k,y_k) I_y(x_k,y_k)) \left(\frac{\Delta x}{\Delta y}\right))^2 \\ &= \sum_{(x_k,y_k)\in W} (-(I_x(x_k,y_k) I_y(x_k,y_k)) \left(\frac{\Delta x}{\Delta y}\right))^2 \\ &= \sum_{(x_k,y_k)\in W} (I_x(x_k,y_k) I_y(x_k,y_k) \left(\frac{\Delta x}{\Delta y}\right))^2 \\ &= \sum_{(x_k,y_k)\in W} ((I_x(x_k,y_k) I_y(x_k,y_k) \left(\frac{\Delta x}{\Delta y}\right)))((I_x(x_k,y_k) I_y(x_k,y_k)) \left(\frac{\Delta x}{\Delta y}\right)) \\ &= \sum_{W} ((\Delta x \Delta y)) \left(\frac{I_x}{I_y}\right) (I_x I_y) \left(\frac{\Delta x}{\Delta y}\right) \\ &= \sum_{W} (\Delta x \Delta y) \left(\frac{I_xI_x}{I_xI_y} I_yI_y\right) \left(\frac{\Delta x}{\Delta y}\right) \\ &= (\Delta x \Delta y) \left(\frac{\Sigma_w I_x^2 - \Sigma_w I_xI_y}{\Sigma_w I_xI_y - \Sigma_w I_y^2}\right) \left(\frac{\Delta x}{\Delta y}\right) \end{split}$$

Harris detector

$$= (\Delta x \quad \Delta y) \begin{bmatrix} \sum_{(x_{k}, y_{k}) \in W} (I_{x}(x_{k}, y_{k}))^{2} & \sum_{(x_{k}, y_{k}) \in W} I_{y}(x_{k}, y_{k}) \\ \sum_{(x_{k}, y_{k}) \in W} I_{x}(x_{k}, y_{k}) I_{y}(x_{k}, y_{k}) & \sum_{(x_{k}, y_{k}) \in W} (I_{y}(x_{k}, y_{k}))^{2} \end{bmatrix} (\Delta x) \\ (\Delta y) = (\Delta x) \left[\sum_{(x_{k}, y_{k}) \in W} (I_{x}(x_{k}, y_{k}))^{2} & \sum_{(x_{k}, y_{k}) \in W} (I_{y}(x_{k}, y_{k}))^{2} & \sum_{(x_$$

Auto-correlation matrix M

Harris detection

- Auto-correlation matrix
 - captures the structure of the local neighborhood
 - measure based on eigenvalues of M which form a rotationally invariant descriptor.
 - 2 strong eigenvalues => interest point
 - 1 strong eigenvalue => contour
 - 0 eigenvalue => uniform region
- Interest point detection
 - threshold on the eigenvalues
 - local maximum for localization

Some Details from the Harris Paper

- Let α and β be the two eigenvalues
- $Tr(M) = \alpha + \beta$
- $Det(M) = \alpha\beta$
- Response R = Det(M) k Tr(M)
- R is positive for corners, for edges, and small for flat regions
- Select corner pixels that are 8-way local maxima

Trace and determinant are easy to compute.

Determining correspondences

Vector comparison using a distance measure

What are some suitable distance measures?

Some Matching Results

Summary of the approach

- Very good results in the presence of occlusion and clutter
 - local information
 - discriminant greyvalue information
 - invariance to image rotation and illumination
- Not invariance to scale and affine changes
- Solution for more general view point changes
 - local invariant descriptors to scale and rotation
 - extraction of invariant points and regions