Interest Points & Descriptors 3 - SIFT

Today's lecture:

- Invariant Features, SIFT
- Interest Points and Descriptors
 - Recap: Harris, Correlation
- Adding scale and rotation invariance
 - Multi-Scale Oriented Patch descriptors
- SIFT
 - Scale Invariant Feature Transform
 - Interest point detector (DOG)
 - Descriptor

Harris Corners & Correlation

- Classic approach to image feature matching
- Harris corners
 - Low autocorrelation / high SSD in 2D
- Correlation matching
 - Equivalent to SSD for normalised patches
- Robust image matching
 - cf. pixel based error functions
- BUT: poor invariance properties

	original	translated	rotated	scaled
--	----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?

original translated rotated	scaled
-----------------------------	--------

	Translation	Rotation	Scale
Is Harris invariant?	?	?	?
Is correlation invariant?	?	?	?

original	translated	rotated	scaled
----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	YES	?	?
Is correlation invariant?	?	?	?

original	translated	rotated	scaled
----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	?
Is correlation invariant?	?	?	?

	original	translated	rotated	scaled
--	----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?

original	translated	rotated	scaled
----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	?	?	?

original	translated	rotated	scaled
----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	?	?

original	translated	rotated	scaled
----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	?

original	translated	rotated	scaled
----------	------------	---------	--------

	Translation	Rotation	Scale
Is Harris invariant?	YES	YES	NO
Is correlation invariant?	YES	NO	NO

Invariant Features

 Local image descriptors that are *invariant* (unchanged) under image transformations

Interest Points and Descriptors

Interest Points

- Focus attention for image understanding
- Points with 2D structure in the image
- Examples: Harris corners, DOG maxima

Descriptors

- Describe region around an interest point
- Must be invariant under
 - Geometric distortion
 - Photometric changes
- Examples: Oriented patches, SIFT

Canonical Frames

Extract oriented patches at multiple scales

[Brown, Szeliski, Winder CVPR 2005]

Interest point

- x, y, scale = multi-scale Harris corners
- rotation = blurred gradient

Descriptor

- Bias gain normalised image patch
- Sampled at 5x scale

Sample scaled, oriented patch

Sample scaled, oriented patch 8x8 patch, sampled at 5 x scale

Sample scaled, oriented patch 8x8 patch, sampled at 5 x scale

Bias/gain normalised

Application: Image Stitching

[Microsoft Digital Image Proversion 10]

Image Sampling : Scale

2 blur, downsample $\downarrow 2$

downsample $\downarrow 2$

Image Sampling : Scale

This is aliasing!

downsample $\downarrow 2$

blur, downsample $\ \ 12$

Image Sampling : Scale

↓2

Image Sampling : Rotation

Problem: sample grids are not aligned...

Bilinear Interpolation

Use all 4 adjacent samples

The SIFT (Scale Invariant Feature Transform) Detector and Descriptor

> developed by David Lowe University of British Columbia Initial paper ICCV 1999 Newer journal paper IJCV 2004

Motivation

- The Harris operator is not invariant to scale and correlation is not invariant to rotation^{1.}
- For better image matching, Lowe's goal was to develop an interest operator that is invariant to scale and rotation.
- Also, Lowe aimed to create a descriptor that was robust to the variations corresponding to typical viewing conditions.

¹But Schmid and Mohr developed a rotation invariant descriptor for it in 1997.

Idea of SIFT

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Claimed Advantages of SIFT

- Locality: features are local, so robust to occlusion and clutter (no prior segmentation)
- Distinctiveness: individual features can be matched to a large database of objects
- Quantity: many features can be generated for even small objects
- **Efficiency:** close to real-time performance
- Extensibility: can easily be extended to wide range of differing feature types, with each adding robustness

Overall Procedure at a High Level

1. Scale-space extrema detection

Search over multiple scales and image locations.

2. Keypoint localization

Fit a model to detrmine location and scale. Select keypoints based on a measure of stability.

3. Orientation assignment

Compute best orientation(s) for each keypoint region.

4. Keypoint description

Use local image gradients at selected scale and rotation to describe each keypoint region.

1. Scale-space extrema detection

- Goal: Identify locations and scales that can be repeatably assigned under different views of the same scene or object.
- Method: search for stable features across multiple scales using a continuous function of scale.
- Prior work has shown that under a variety of assumptions, the best function is a Gaussian function.
- The scale space of an image is a function L(x,y,σ) that is produced from the convolution of a Gaussian kernel (at different scales) with the input image.

Aside: Image Pyramids

And so on.

3rd level is derived from the 2nd level according to the same function

2nd level is derived from the original image according to some function

Bottom level is the original image.

Aside: Mean Pyramid

And so on.

At 3rd level, each pixel is the mean of 4 pixels in the 2nd level.

At 2nd level, each pixel is the mean of 4 pixels in the original image.

Bottom level is the original image.

Aside: Gaussian Pyramid At each level, image is smoothed and reduced in size.

And so on.

At 2nd level, each pixel is the result of applying a Gaussian mask to the first level and then subsampling to reduce the size.

Bottom level is the original image.

Example: Subsampling with Gaussian pre-filtering

G 1/8

G 1/4

Gaussian 1/2

Lowe's Scale-space Interest Points

Laplacian of Gaussian kernel

- Scale normalised (x by scale²)
- Proposed by Lindeberg
- Scale-space detection
 - Find local maxima across scale/space
 - A good "blob" detector

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{x^2 + y^2}{\sigma^2}}$$

$$\nabla^2 G(x,y,\sigma) = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2}$$

[T. Lindeberg IJCV 1998]

Lowe's Scale-space Interest Points

 Gaussian is an ad hoc solution of heat diffusion equation

 $\frac{\partial G}{\partial \sigma} = \sigma \nabla^2 G.$

Hence

 $G(x,y,k\sigma)-G(x,y,\sigma)\approx (k-1)\sigma^2\nabla^2G.$

 k is not necessarily very small in practice

Lowe's Scale-space Interest Points

- Scale-space function L
 - Gaussian convolution

$$G(x, y, \sigma) = \frac{1}{2\pi\sigma^2} e^{-(x^2 + y^2)/2\sigma^2}$$

 $L(x, y, \sigma) = G(x, y, \sigma) * I(x, y)$, where σ is the width of the Gaussian.

 Difference of Gaussian kernel is a close approximate to scale-normalized Laplacian of Gaussian

$$\begin{array}{rcl} D(x,y,\sigma) &=& (G(x,y,k\sigma) - G(x,y,\sigma)) * I(x,y) \\ &=& L(x,y,k\sigma) - L(x,y,\sigma). \end{array} \begin{array}{ll} \mbox{2 scales:} \\ \sigma \mbox{ and } k\sigma \end{array}$$

Can approximate the Laplacian of Gaussian kernel with a difference of separable convolutions

Lowe's Pyramid Scheme

- Scale space is separated into octaves:
 - Octave 1 uses scale σ
 - Octave 2 uses scale 2σ
 - etc.
- In each octave, the initial image is repeatedly convolved with Gaussians to produce a set of scale space images.
- Adjacent Gaussians are subtracted to produce the DOG
- After each octave, the Gaussian image is down-sampled by a factor of 2 to produce an image ¼ the size to start the next level.

Lowe's Pyramid Scheme

The parameter **s** determines the number of images per octave.

Key point localization

s+2 difference images.top and bottom ignored.s planes searched.

- Detect maxima and minima of difference-of-Gaussian in scale space
- Each point is compared to its 8 neighbors in the current image and 9 neighbors each in the scales above and below

For each max or min found, output is the **location** and the **scale**.

Scale-space extrema detection: experimental results over 32 images that were synthetically transformed and noise added.

Sampling in scale for efficiency

- How many scales should be used per octave? S=?
 - More scales evaluated, more keypoints found
 - S < 3, stable keypoints increased too
 - S > 3, stable keypoints decreased
 - S = 3, maximum stable keypoints found

Keypoint localization

Once a keypoint candidate is found, perform a detailed fit to nearby data to determine

Iocation, scale, and ratio of principal curvatures

- In initial work keypoints were found at location and scale of a central sample point.
- In newer work, they fit a 3D quadratic function to improve interpolation accuracy.
- The Hessian matrix was used to eliminate edge responses.

Eliminating the Edge Response

Reject flats:

 \Box $|D(\hat{x})| < 0.03$

Reject edges:

$$\mathbf{H} = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \quad \begin{bmatrix} \text{Let } \alpha \text{ be the eigenvalue with} \\ \text{larger magnitude and } \beta \text{ the smaller.} \end{bmatrix}$$

$$\operatorname{Tr}(\mathbf{H}) = D_{xx} + D_{yy} = \alpha + \beta,$$
$$\operatorname{Det}(\mathbf{H}) = D_{xx}D_{yy} - (D_{xy})^2 = \alpha\beta.$$
$$\begin{array}{rcl} \operatorname{Let} \mathbf{r} = \alpha/\beta.\\ \operatorname{So} \alpha = \mathbf{r}\beta \end{array} & \begin{array}{rcl} \frac{\operatorname{Tr}(\mathbf{H})^2}{\operatorname{Det}(\mathbf{H})} = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(r\beta + \beta)^2}{r\beta^2} = \frac{(r+1)^2}{r},\\ \mathbf{p} < \mathbf{10} \end{array}$$

(r+1)²/r is at a min when the 2 eigenvalues are equal.

What does this look like?

3. Orientation assignment

- Create histogram of local gradient directions at selected scale
- Assign canonical orientation at peak of smoothed histogram
- Each key specifies
 stable 2D coordinates
 (x, y, scale, orientation)

If 2 major orientations, use both.

Keypoint localization with orientation

832

initial keypoints

536

keypoints after ratio threshold

4/19/2007

4. Keypoint Descriptors

- At this point, each keypoint has
 - Iocation
 - scale
 - orientation
- Next is to compute a descriptor for the local image region about each keypoint that is
 - highly distinctive
 - invariant as possible to variations such as changes in viewpoint and illumination

Normalization

- Rotate the window to standard orientation
- Scale the window size based on the scale at which the point was found.

Lowe's Keypoint Descriptor (shown with 2 X 2 descriptors over 8 X 8)

In experiments, 4x4 arrays of 8 bin histogram is used, a total of 128 features for one keypoint

Statistical Motivation

4/19/2007

Interest points are subject to error in
 position, scale, orientation

[Geometric Blur Berg Malik, GLOH Mikolajczyk etc.]

Biological Motivation

- Mimic complex cells in primary visual cortex
- Hubel & Wiesel found that cells are sensitive to orientation of edges, but insensitive to their position
- This justifies spatial pooling of edge responses

["Eye, Brain and Vision" – Hubel and Wiesel 1988]

Lowe's Keypoint Descriptor

- use the normalized region about the keypoint
- compute gradient magnitude and orientation at each point in the region
- weight them by a Gaussian window overlaid on the circle
- create an orientation histogram over the 4 X 4 subregions of the window
- 4 X 4 descriptors over 16 X 16 sample array were used in practice. 4 X 4 times 8 directions gives a vector of 128 values.

Using SIFT for Matching "Objects"

Uses for SIFT

- Feature points are used also for:
 - Image alignment (homography, fundamental matrix)
 - □ 3D reconstruction (e.g. Photo Tourism)
 - Motion tracking
 - Object recognition
 - Indexing and database retrieval
 - Robot navigation
 - □ ... many others