

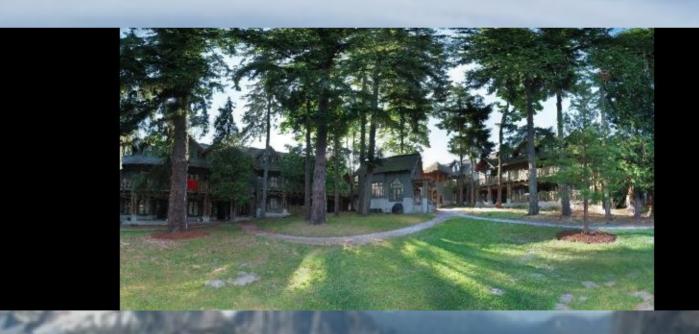
Matthew Brown and David Lowe, University of British Columbia

Introduction

- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°

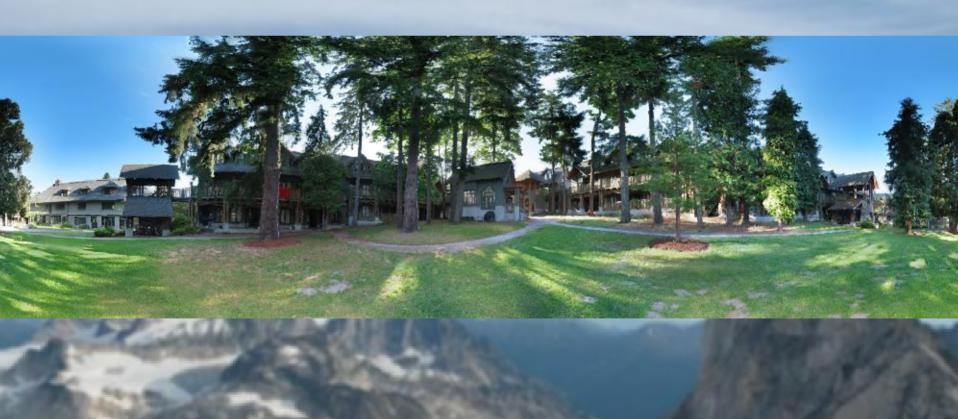
Introduction

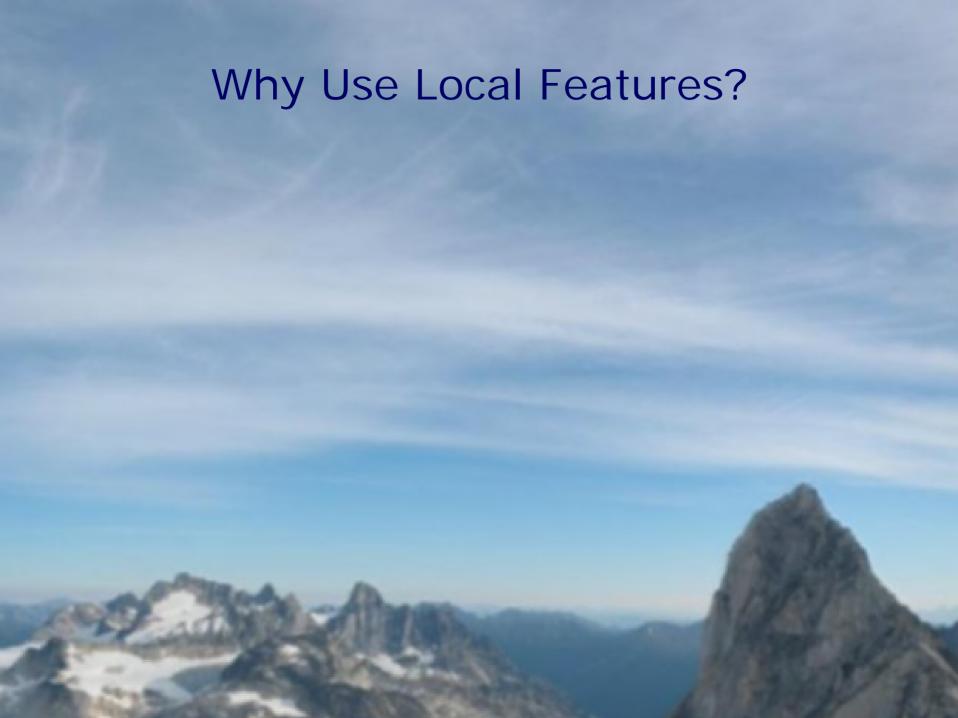
- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV = $200 \times 135^{\circ}$



Introduction

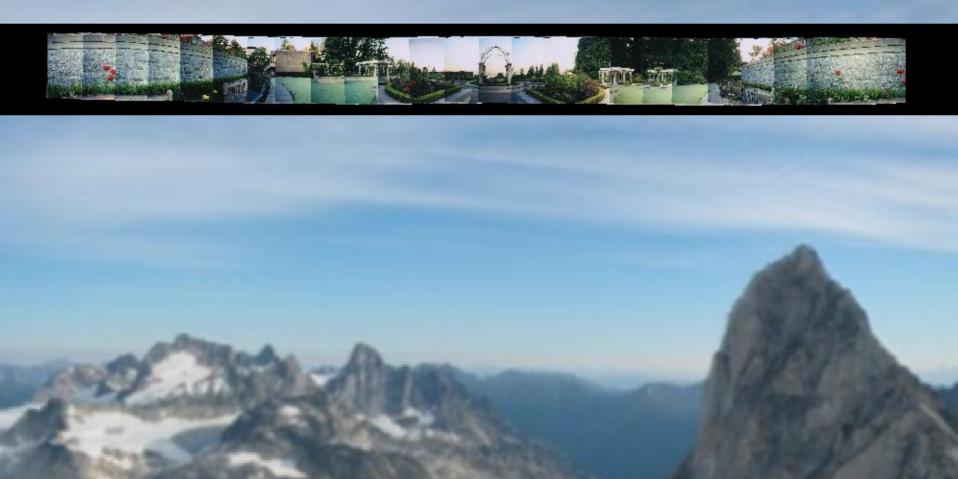
- Are you getting the whole picture?
 - Compact Camera FOV = 50 x 35°
 - Human FOV $= 200 \times 135^{\circ}$
 - Panoramic Mosaic = $360 \times 180^{\circ}$



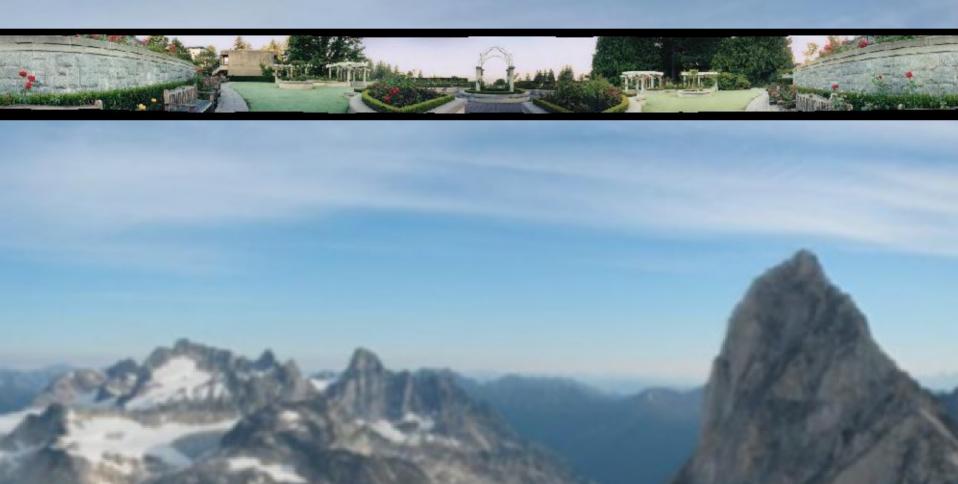


- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 1D Rotations (θ)
 - Ordering ⇒ matching images



- 1D Rotations (θ)
 - Ordering ⇒ matching images



- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 2D Rotations (θ, φ)
 - Ordering ⇒ matching images

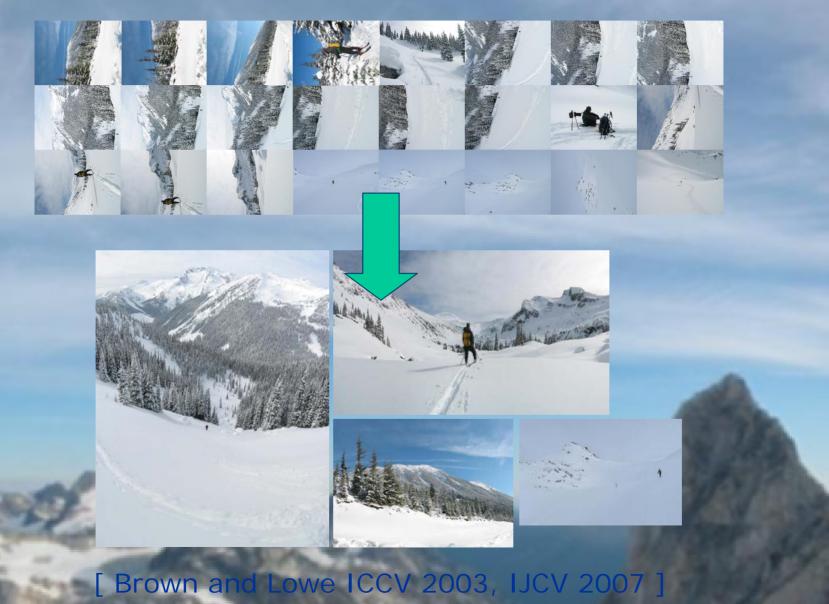
- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 2D Rotations (θ, φ)
 - Ordering ⇒ matching images

- 1D Rotations (θ)
 - Ordering ⇒ matching images

- 2D Rotations (θ, φ)
 - Ordering ⇒ matching images

Recognising Panoramas



Automatic Stitching

- Feature Matching
- Image Matching
- Image Alignment
- Rendering
- Results
- Conclusions

Automatic Stitching

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Image Alignment
- Rendering
- Results
- Conclusions

Invariant Features

Schmid & Mohr 1997, Lowe 1999, Baumberg 2000, Tuytelaars
 & Van Gool 2000, Mikolajczyk & Schmid 2001, Brown & Lowe
 2002, Matas et. al. 2002, Schaffalitzky & Zisserman 2002

SIFT Features

- Invariant Features
 - Establish invariant frame
 - Maxima/minima of scale-space DOG ⇒ x, y, s
 - Maximum of distribution of local gradients $\Rightarrow \theta$
 - Form descriptor vector
 - Histogram of smoothed local gradients
 - 128 dimensions
- SIFT features are...
 - Geometrically invariant to similarity transforms,
 - some robustness to affine change
 - Photometrically invariant to affine changes in intensity

Automatic Stitching

- Feature Matching
 - SIFT Features
 - Nearest Neighbour Matching
- Image Matching
- Image Alignment
- Rendering
- Results
- Conclusions

Nearest Neighbour Matching

Nearest neighbour matching

$$\forall j \ NN(j) = \arg\min_{i} ||\mathbf{x}_i - \mathbf{x}_j||, \ i \neq j$$

[Beis Lowe 1997, Nene Nayar 1997, Gray Moore 2000, Shakhnarovich 2003]

- Use k-d tree
 - k-d tree recursively bi-partitions data at mean in the dimension of maximum variance
 - Approximate nearest neighbours found in O(n log n)
- Find k-NN for each feature
 - k ≈ number of overlapping images (we use k = 4)

K-d tree

K-d tree

Automatic Stitching

- Feature Matching
- Image Matching
 - Motion Model
 - RANSAC
- Image Alignment
- Rendering
- Results
- Conclusions

2D Motion Models

• Linear (affine)

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_{13} \\ a_{23} \end{bmatrix}$$

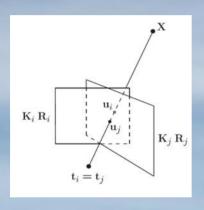
$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homography

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homography for Rotation

• Projection equation $\tilde{\mathbf{u}} = \mathbf{K}(\mathbf{R}|\mathbf{t})\tilde{\mathbf{X}}$



set t = 0 for a pair

$$egin{aligned} & ilde{\mathbf{u}}_i = \mathbf{K}_i(\mathbf{R}_i|\mathbf{0}) ilde{\mathbf{X}} = \mathbf{K}_i \mathbf{R}_i \mathbf{X} \ & ilde{\mathbf{u}}_j = \mathbf{K}_j(\mathbf{R}_j|\mathbf{0}) ilde{\mathbf{X}} = \mathbf{K}_j \mathbf{R}_j \mathbf{X} \end{aligned}$$

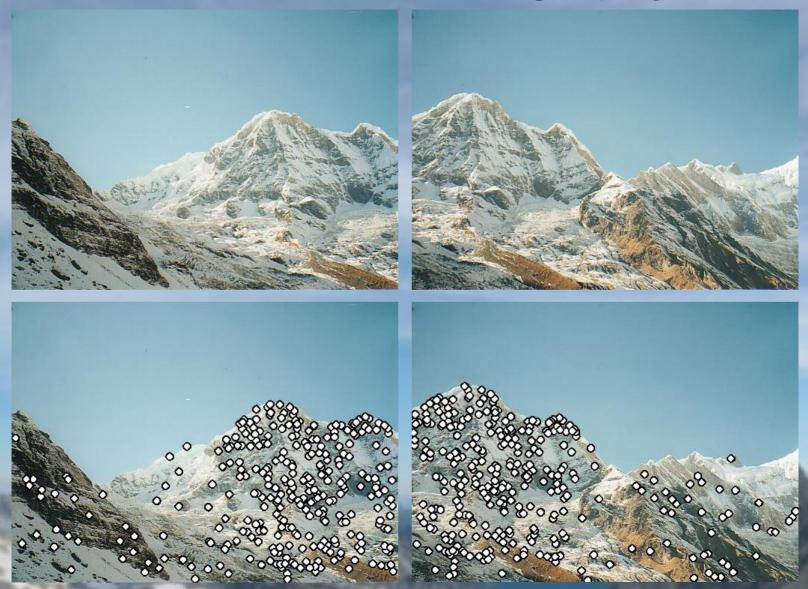
• \rightarrow pairwise homographies $\tilde{\mathbf{u}}_i = \mathbf{H}_{ij} \tilde{\mathbf{u}}_j$

where
$$\mathbf{H}_{ij} = \mathbf{K}_i \mathbf{R}_i \mathbf{R}_j^T \mathbf{K}_j^{-1}$$

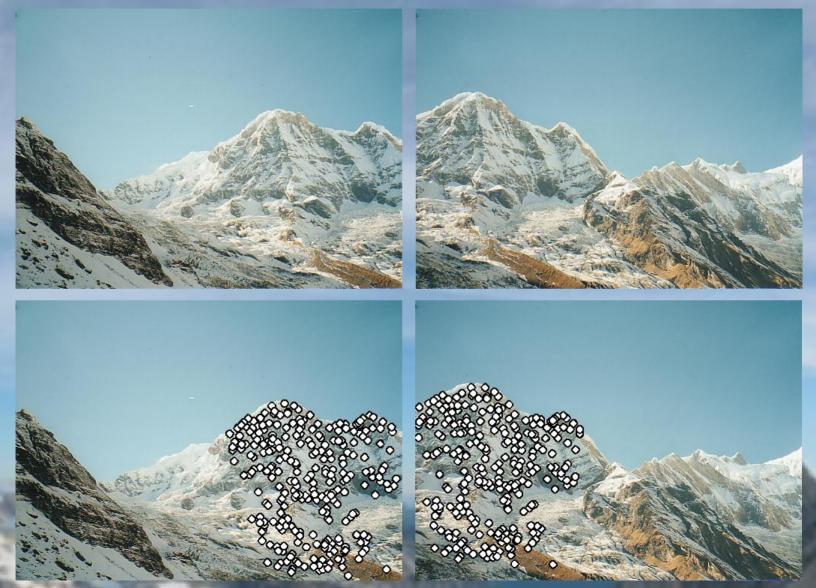
Automatic Stitching

- Feature Matching
- Image Matching
 - Motion Model
 - RANSAC
- Image Alignment
- Rendering
- Results
- Conclusions

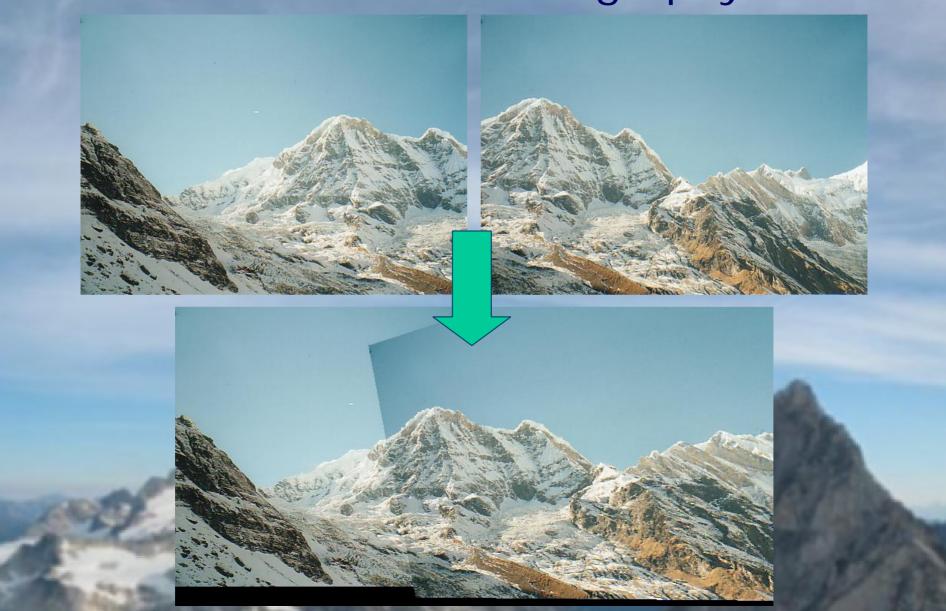
RANSAC for Homography



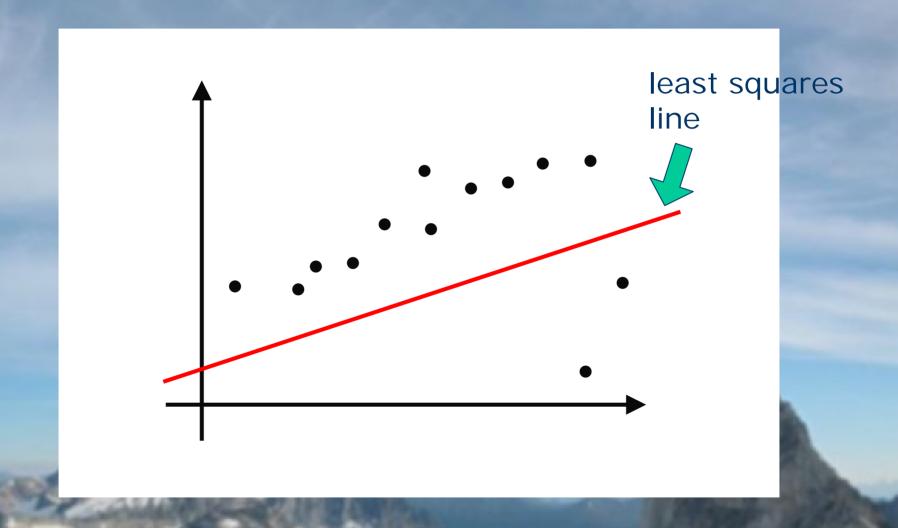
RANSAC for Homography



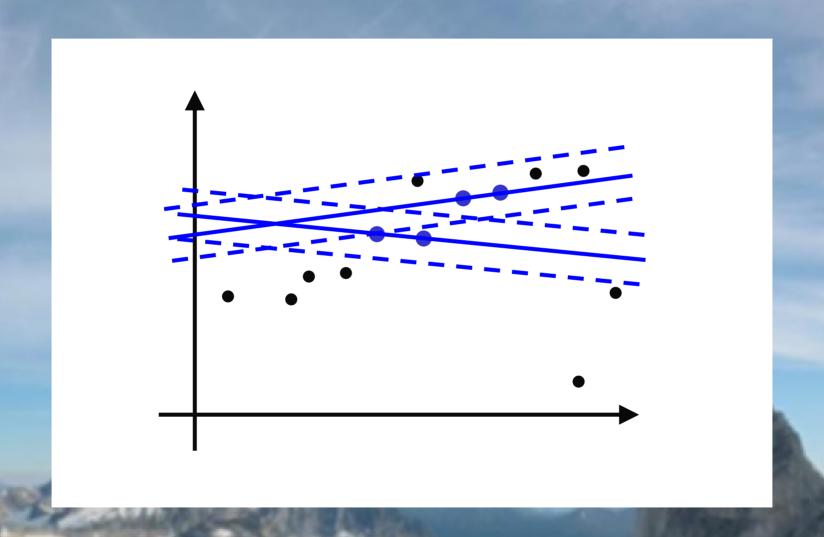
RANSAC for Homography



RANSAC: 1D Line Fitting

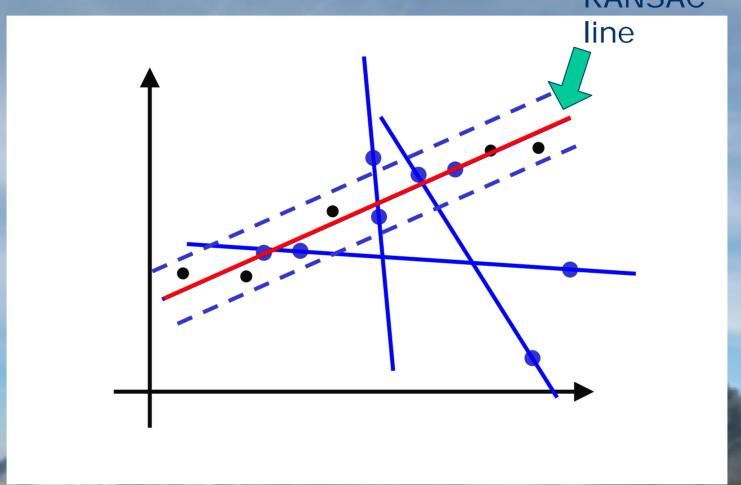


RANSAC: 1D Line Fitting

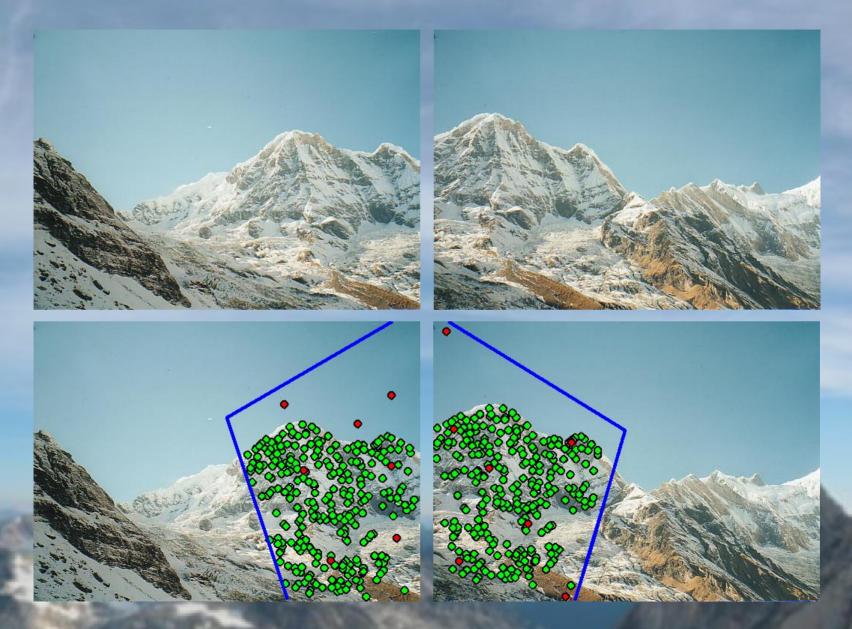


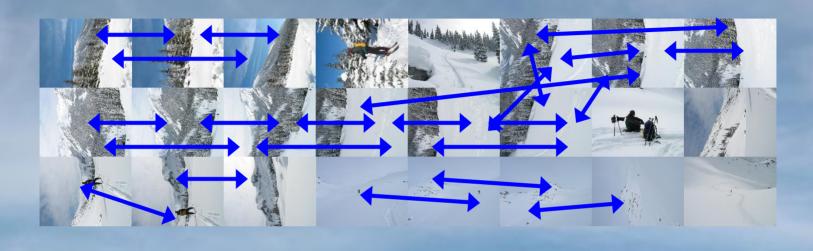
RANSAC: 1D Line Fitting

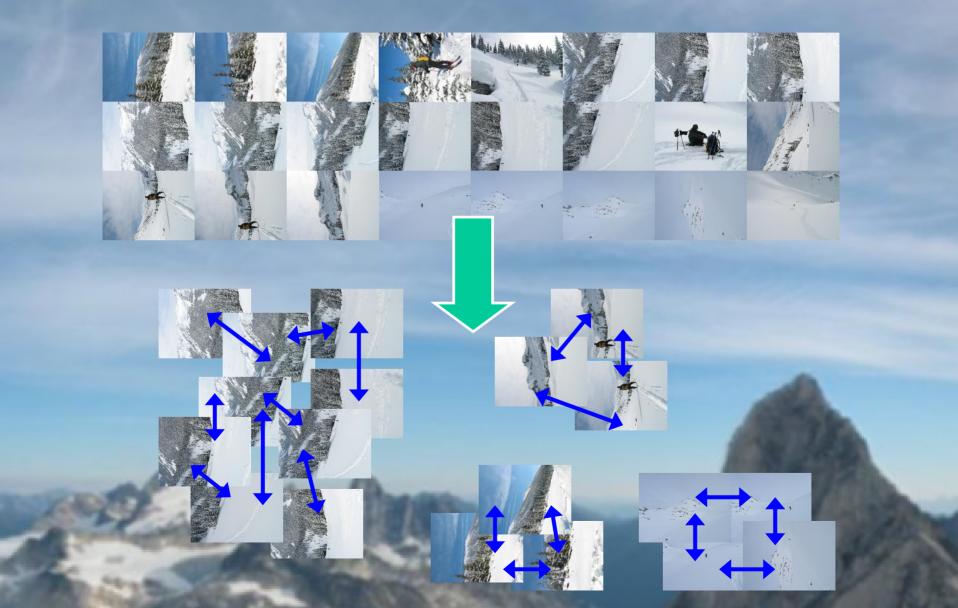
RANSAC

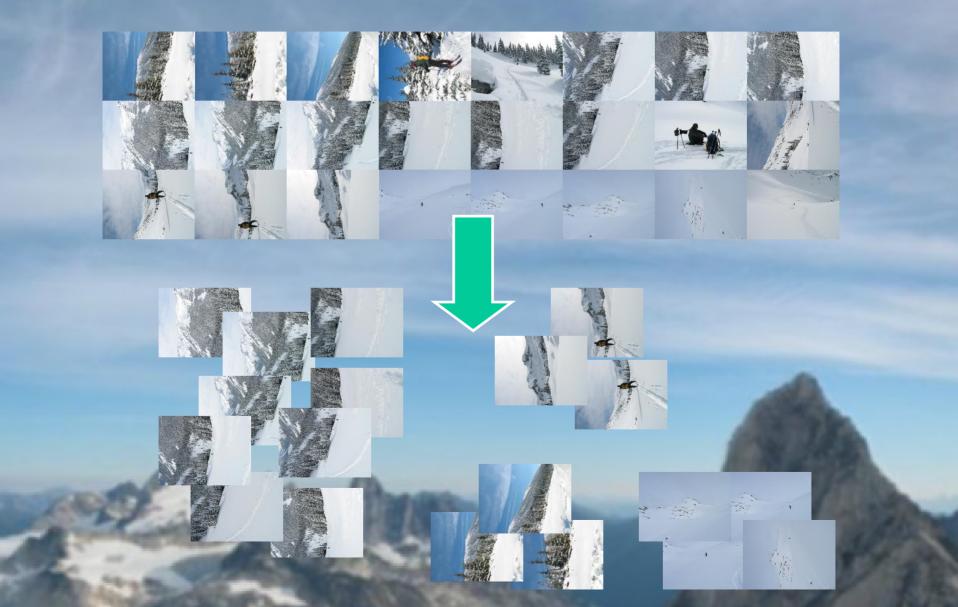


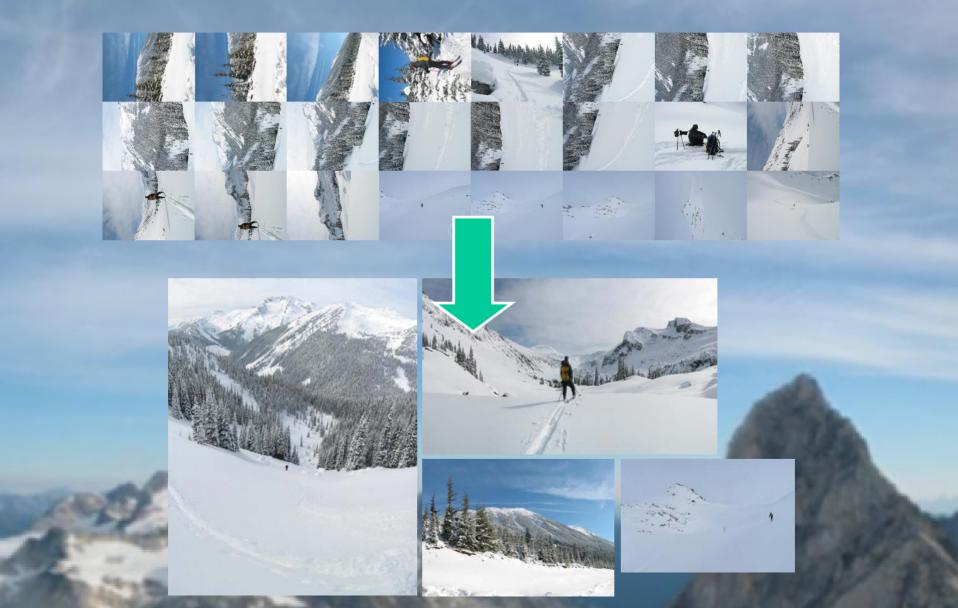
Match Verification











Automatic Stitching

- Feature Matching
- Image Matching
- Image Alignment
 - Bundle Adjustment
 - Automatic Straightening
- Rendering
- Results
- Conclusions

Motion Model Revisited

Recall our image motion model

$$\tilde{\mathbf{u}} = \mathbf{K}_i \mathbf{R}_i \mathbf{X}$$

Parameterise each camera by rotation and focal length

$$\mathbf{R}_i = e^{[oldsymbol{ heta}_i]_ imes}$$
, $[oldsymbol{ heta}_i]_ imes = egin{bmatrix} 0 & - heta_{i3} & heta_{i2} \ heta_{i3} & 0 & - heta_{i1} \ - heta_{i2} & heta_{i1} & 0 \end{bmatrix}$

$$\mathbf{K}_i = egin{bmatrix} f_i & \mathsf{0} & \mathsf{0} \ \mathsf{0} & f_i & \mathsf{0} \ \mathsf{0} & \mathsf{0} & \mathsf{1} \end{bmatrix}$$

Bundle Adjustment

Sum of squared projection errors

$$e = \sum_{i=1}^{n} \sum_{j \in I(i)} \sum_{k \in F(i,j)} f(\mathbf{r}_{ij}^{k})$$

- n = #images
- I(i) = set of image matches to image i
- F(i, j) = set of feature matches between images i,j
- r_{ij}^k = residual of kth feature match between images i,j
- Huber (robust) error function

$$f(\mathbf{x}) = \begin{cases} |\mathbf{x}|^2, & \text{if } |\mathbf{x}| < \sigma \\ 2\sigma |\mathbf{x}| - \sigma^2, & \text{if } |\mathbf{x}| \ge \sigma \end{cases}$$

Bundle Adjustment

 Adjust rotation, focal length of each image to minimise error in matched features

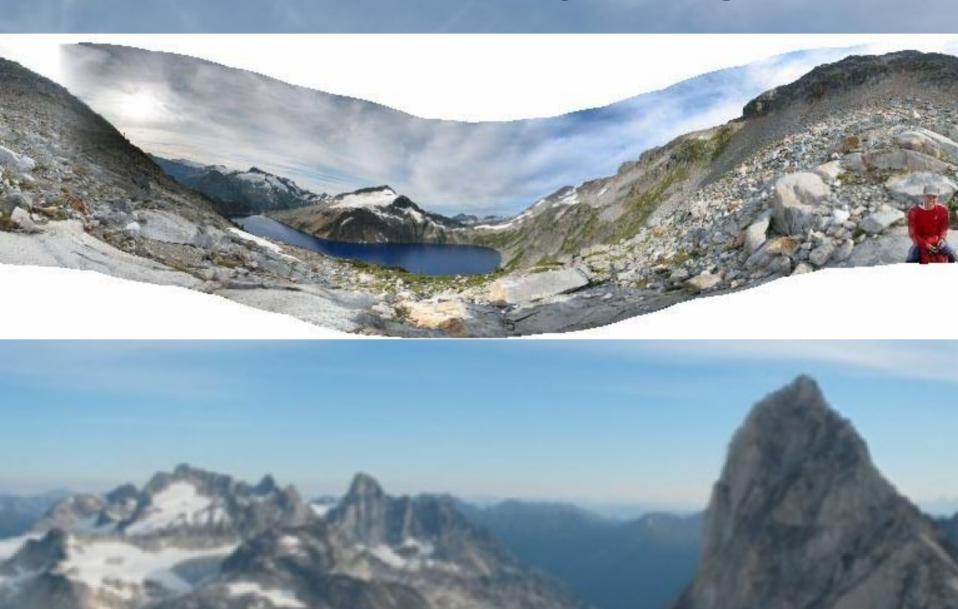
Bundle Adjustment

 Adjust rotation, focal length of each image to minimise error in matched features

Automatic Stitching

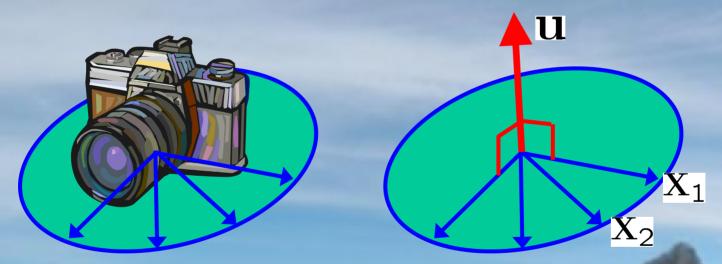
- Feature Matching
- Image Matching
- Image Alignment
 - Bundle Adjustment
 - Automatic Straightening
- Rendering
- Results
- Conclusions

Automatic Straightening



Automatic Straightening

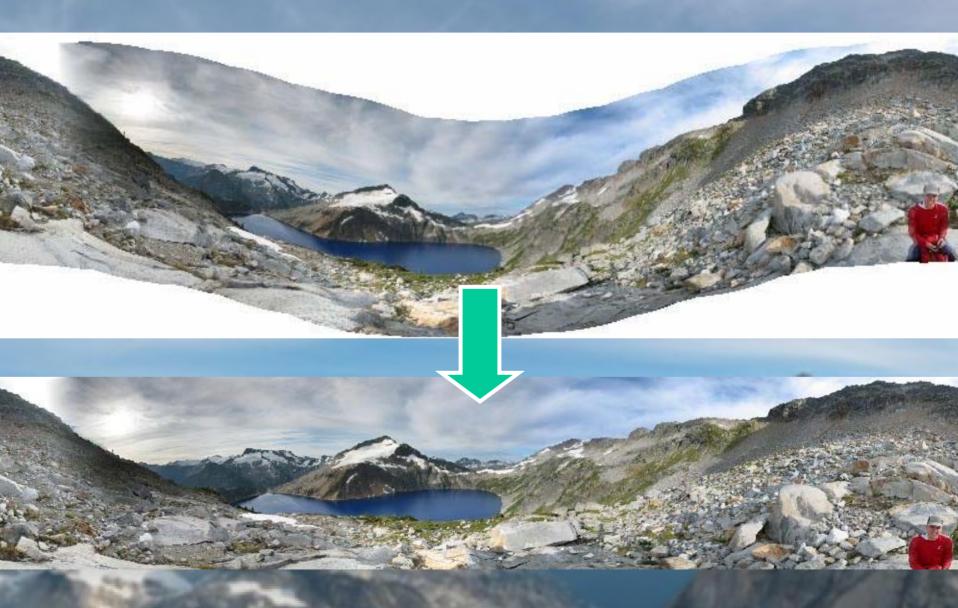
Heuristic: user does not twist camera relative to horizon



Up-vector perpendicular to plane of camera x vectors

$$\left(\sum_i \mathbf{X}_i \mathbf{X}_i^T
ight) \mathbf{u} = \mathbf{0}$$

Automatic Straightening



Automatic Stitching

- Feature Matching
- Image Matching
- Image Alignment
- Rendering
- Results
- Conclusions

Gain Compensation

No gain compensation

Gain Compensation

Gain compensation

- Single gain parameter g_i for each image

$$e = \sum_{i} \sum_{j} \sum_{\mathbf{u}_{i} \in \mathcal{R}(i,j)} (g_{i}I_{i}(\mathbf{u}_{i}) - g_{j}I_{j}(\mathbf{u}_{j}))^{2}$$

(Better solution = HDR [Debevec 1997])

No blending

Linear blending

Each pixel is a weighted sum

$$I^{linear} = \frac{\sum_{i} I^{i} W^{i}}{\sum_{i} W^{i}}$$

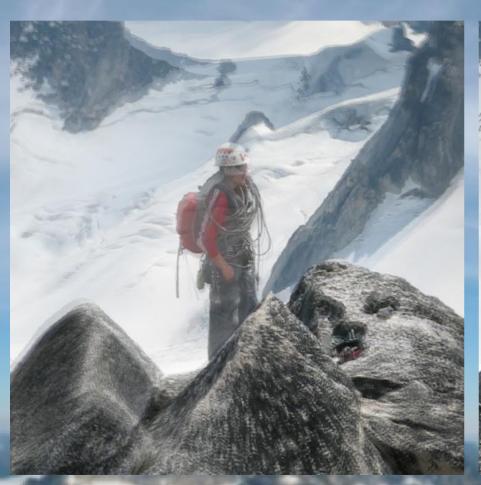
Multi-band blending

- Each pixel is a weighted sum (for each band)

$$I_{k\sigma}^{multi} = \frac{\sum_{i} I_{k\sigma}^{i} W_{k\sigma}^{i}}{\sum_{i} W_{k\sigma}^{i}}$$

Linear blending

Multi-band blending



2-band Blending

2-band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Seam Selection

(simple) Choose image with max "weight":



• (better) ...also minimise error on seams

[Agarwala et al SIGGRAPH 04]

Automatic Stitching

- Feature Matching
- Image Matching
- Image Alignment
- Rendering
- Results
- Conclusions

Evaluation

• 200+ test sequences...

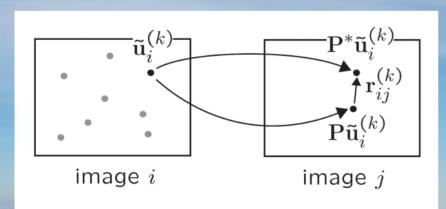
Ground Truth

- Real: stitch "by hand"
- Synthetic: sample virtual camera views

Stitched panorama

Error function

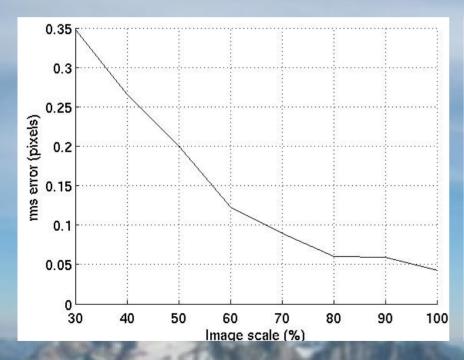
- Compare test stitch with ground truth
 - Ground truth $P^* = \{P_1^*, P_2^*, ...P_n^*\}$
 - Test stitch $P = \{P_1, P_2, ...P_n\}$
- Evaluation function
 - sum of pairwise projection errors wrt ground truth

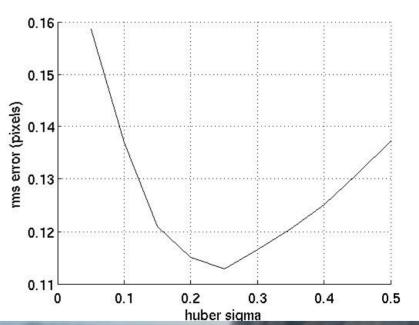


$$e(\mathbf{P}^*, \mathbf{P}) = \sum_{i} \sum_{\mathbf{u}_{i}^{(k)} \in \mathcal{O}(i, j)} |\mathbf{r}_{ij}^{(k)}|^2$$

Results

- Testing performance
 Tuning parameters (image scale)
 - (Huber sigma)





Conclusions

- Image Stitching using Local Features
 - c.f. "direct methods": fast, robust,
 - 2D stitching is a recognition problem
- Multi-Image Matching Framework
 - Local features, RANSAC, bundle adjustment, blending
- Future Work
 - camera model += radial distortion, camera translation, scene motion, vignetting, HDR, flash ...
 - Full 3D case
 - e.g. Photo Tourism [Snavely et al SIGGRAPH 2006]

http://research.microsoft.com/~brown