Texture

Texture is a description of the spatial arrangement of color or intensities in an image or a selected region of an image.

Structural approach: a set of texels in some regular or repeated pattern

Problem with Structural Approach

How do you decide what is a texel?

Ideas?

Natural Textures from VisTex

grass

leaves

What/Where are the texels?

The Case for Statistical Texture

- Segmenting out texels is difficult or impossible in real images.
- Numeric quantities or statistics that describe a texture can be computed from the gray tones (or colors) alone.
- This approach is less intuitive, but is computationally efficient.
- It can be used for both classification and segmentation.

Some Simple Statistical Texture Measures

1. Edge Density and Direction

- Use an edge detector as the first step in texture analysis.
- The number of edge pixels in a fixed-size region tells us how busy that region is.
- The directions of the edges also help characterize the texture

Two Edge-based Texture Measures

1. edgeness per unit area

Fedgeness $=\mid\{\mathbf{p} \mid$ gradient_magnitude $(\mathbf{p}) \geq$ threshold $\} \mid / \mathbf{N}$
where N is the size of the unit area
2. edge magnitude and direction histograms

Fmagdir $=($ Hmagnitude, Hdirection $)$
where these are the normalized histograms of gradient magnitudes and gradient directions, respectively.

Example

Original Image

Thresholded Edge Image

Local Binary Pattern Measure

- For each pixel p, create an 8-bit number b1 b2 b3 b4 b5 b6 b7 b8, where $b_{i}=0$ if neighbor i has value less than or equal to p's value and 1 otherwise.
- Represent the texture in the image (or a region) by the histogram of these numbers.

Example

Fids (Flexible Image Database System) is retrieving images similar to the query image using LBP texture as the texture measure and comparing their LBP histograms

Fids demo

Random Go Zoomin Found 191 matches. Displaying 1-6
distance measures loose ... strict

1	1	1	1	1	1	1
1	1	1	1			
1	1	1	1	1	1	1

 \begin{tabular}{ll|lllll}
1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1

\hline 1 \& 1 \& 1

\hline

1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1

\hline 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1

\hline
\end{tabular}

1	1	1	1
1	1	1	1
1	1	1	1
1	1	1	1

5

1	1	1	1	1

Sever Connected

Example

Fids demo

Low-level measures don't always find semantically similar images.

Put In Cart
Check Out

Randomi Go Zoomin Found 119 matches. Displaying 1-6

[^0]
Co-occurrence Matrix Features

A co-occurrence matrix is a 2 D array C in which

- Both the rows and columns represent a set of possible image values.
- $\mathrm{C}_{\mathrm{d}}(\mathrm{i}, \mathrm{j})$ indicates how many times value i co-occurs with value jin a particular spatial relationship d.
- The spatial relationship is specified by a vector $d=(d r, d c)$.

Co-occurrence Example

	1		
1100			012
1100	${ }^{-1}$	0	103
0022	\square^{3}	1	202
0022	j .	2	001
0022		co-occurrence matrix	
0022	$\mathrm{d}=(3,1)$		
gray-tone image			

From C_{d} we can compute N_{d}, the normalized co-occurrence matrix, where each value is divided by the sum of all the values.

Co-occurrence Features

What do these measure?

$$
\begin{align*}
\text { Energy } & =\sum_{i} \sum_{j} N_{d}^{2}(i, j) \tag{7.7}\\
\text { Entropy } & =-\sum_{i} \sum_{j} N_{d}(i, j) \log _{2} N_{d}(i, j) \tag{7.8}\\
\text { Contrast } & =\sum_{i} \sum_{j}(i-j)^{2} N_{d}(i, j) \tag{7.9}\\
\text { Homogeneity } & =\sum_{i} \sum_{j} \frac{N_{d}(i, j)}{1+|i-j|} \tag{7.10}\\
\text { Correlation } & =\frac{\sum_{i} \sum_{j}\left(i-\mu_{i}\right)\left(j-\mu_{j}\right) N_{d}(i, j)}{\sigma_{i} \sigma_{j}} \tag{7.11}
\end{align*}
$$

where μ_{i}, μ_{j} are the means and σ_{i}, σ_{j} are the standard deviations of the row and column sums.

Energy measures uniformity of the normalized matrix.

But how do you choose d?

- This is actually a critical question with all the statistical texture methods.
- Are the "texels" tiny, medium, large, all three ...?
- Not really a solved problem.

Zucker and Terzopoulos suggested using a χ^{2} statistical test to select the value(s) of d that have the most structure for a given class of images.

Example

Laws' Texture Energy Features

- Signal-processing-based algorithms use texture filters applied to the image to create filtered images from which texture features are computed.
- The Laws Algorithm
- Filter the input image using texture filters.
- Compute texture energy by summing the absolute value of filtering results in local neighborhoods around each pixel.
- Combine features to achieve rotational invariance.

Law's texture masks (1)

L5	(Level)
E5	$=\left[\begin{array}{rrrrr}1 & 4 & 6 & 4 & 1\end{array}\right]$
S5dge)	$=\left[\begin{array}{rrrrr}-1 & -2 & 0 & 2 & 1\end{array}\right]$
R5 (Spot)	$=\left[\begin{array}{rrrrr}-1 & 0 & 2 & 0 & -1\end{array}\right]$
1	-4

- (L5) (Gaussian) gives a center-weighted local average
- (E5) (gradient) responds to row or col step edges
- (S5) (LOG) detects spots
- (R5) (Gabor) detects ripoles

Law's texture masks (2)

Creation of 2D Masks

- 1D Masks are "multiplied" to construct 2D masks: mask E5L5 is the "product" of E5 and L5 -

$$
\text { E5 }\left[\begin{array}{r}
-1 \\
-2 \\
0 \\
2 \\
1
\end{array}\right] \times\left[\begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array}\right]=\left[\begin{array}{rrrrr}
-1 & -4 & -6 & -4 & -1 \\
-2 & -8 & -12 & -8 & -1 \\
0 & 0 & 0 & 0 & 0 \\
2 & 8 & 12 & 8 & 2 \\
1 & 4 & 6 & 4 & 1
\end{array}\right]
$$

E5L5

9D feature vector for pixel

- Subtract mean neighborhood intensity from (center) pixel
- Dot product 165×5 masks with neighborhood
- 9 features defined as follows:

L5E5/E5L5
L5R5/R5L5
E5S5/S5E5
S5S5
R5R5

L5S5/S5L5
E5E5
E5R5/R5E5
S5R5/R5S5

Laws Filters

Laws Process

Example: Using Laws Features to Cluster

Features from sample images

Table 7.2: Laws texture enengy measures for major regions of the images of Figure 7.8.

Region	E5E5	S5S5	R5R5	E5L5	S6L5	R5L5	S5E5	R5E5	R5S5
Tiger	168.1	84.0	807.7	553.7	354.4	910.6	116.3	339.2	257.4
Water	68.5	36.9	366.8	218.7	149.3	459.4	49.6	159.1	117.3
Flags	258.1	113.0	787.7	1057.6	702.2	2056.3	182.4	611.5	350.8
Fence	189.5	80.7	624.3	701.7	377.5	803.1	120.6	297.5	215.0
Grass	206.5	103.6	1031.7	625.2	428.3	1153.6	146.0	427.5	323.6
Small flowers	114.9	48.6	289.1	402.6	241.3	484.3	73.6	158.2	109.3
Big flowers	76.7	28.8	177.1	301.5	158.4	270.0	45.6	89.7	62.9
Borders	15.3	6.4	64.4	92.3	36.3	74.5	9.3	26.1	19.5

Gabor Filters

- Similar approach to Laws
- Wavelets at different frequencies and different orientations

Gabor Filters

Gabor Filters

Segmentation with Color and GaborFilter Texture (Smeulders)

A classical texture measure:

Autocorrelation function

- Autocorrelation function can detect repetitive patterns of texels
- Also defines fineness/coarseness of the texture
- Compare the dot product (energy) of non shifted image with a shifted image

$$
\begin{gathered}
\rho(d r, d c)=\frac{\sum_{r=0}^{N} \sum_{c=0}^{N} I[r, c] I(r+d r, c+d c]}{\sum_{r=0}^{N} \sum_{c=0}^{N} I^{2}[r, c]} \\
=\frac{I[r, c] \mid I_{d}[r, c]}{I[r, c] O I[r, c]}
\end{gathered}
$$

Interpreting autocorrelation

- Coarse texture \rightarrow function drops off slowly
- Fine texture \rightarrow function drops off rapidly
- Can drop differently for r and c
- Regular textures \rightarrow function will have peaks and valleys; peaks can repeat far away from [0, 0]
- Random textures \rightarrow only peak at [0, 0]; breadth of peak gives the size of the texture

Fourier power spectrum

- High frequency power \rightarrow fine texture
- Concentrated power \rightarrow regularity
- Directionality \rightarrow directional texture

Blobworld Texture Features

- Choose the best scale instead of using fixed scale(s)
- Used successfully in color/texture segmentation in Berkeley’s Blobworld project

Feature Extraction

- Input: image
- Output: pixel features
- Color features
- Texture features
- Position features
- Algorithm: Select an appropriate scale for each pixel and extract features for that pixel at the selected scale

Texture Scale

- Texture is a local neighborhood property.
- Texture features computed at a wrong scale can lead to confusion.
- Texture features should be computed at a scale which is appropriate to the local structure being described.

The white rectangles show some sample texture scales from the image.

Scale Selection Terminology

- Gradient of the L* component (assuming that the image is in the L*a*b* color space) : $\boldsymbol{\nabla l}\left[\begin{array}{l}l_{x} \\ l_{y}\end{array}\right]$
- Symmetric Gaussian : $\mathrm{G}_{\sigma}(\mathrm{x}, \mathrm{y})=\mathrm{G}_{\sigma}(\mathrm{x})^{*} \mathrm{G}_{\sigma}(\mathrm{y})$
- Second moment matrix: $M_{\sigma}(x, y)=G_{\sigma}(x, y)^{*}(\nabla \mid)(\nabla \mid)^{\top}\left[\begin{array}{ll}I_{x}{ }^{2} & I_{x^{\prime}} \mid \\ I_{x^{\prime} y} & I_{y}\end{array}\right]$

Notes: $\mathrm{G}_{\sigma}(\mathrm{x}, \mathrm{y})$ is a separable approximation to a Gaussian.
σ is the standard deviation of the Gaussian $[0, .5, \ldots 3.5]$.
σ controls the size of the window around each pixel [1 2510172637 50].
$M_{\sigma}(x, y)$ is a $2 X 2$ matrix and is computed at different scales defined by σ.

Scale Selection (continued)

- Make use of polarity (a measure of the extent to which the gradient vectors in a certain neighborhood all point in the same direction) to select the scale at which M_{σ} is computed

Edge: polarity is close to 1 for all scales σ Texture: polarity varies with σ Uniform: polarity takes on arbitrary values

Scale Selection (continued)

polarity p_{σ}

$$
\begin{aligned}
& p_{\sigma}=\frac{\left|E_{+}-E_{-}\right|}{E_{+}+E_{-}} \\
& E_{+}=\sum_{x, y} G_{\sigma}(x, y)[\nabla I \cdot \hat{n}]_{+} \\
& E_{-}=\sum_{x, y} G_{\sigma}(x, y)[\nabla I \cdot \hat{n}]_{-}
\end{aligned}
$$

$$
\mathbf{x}^{\prime}=\left[\begin{array}{ll}
-1 & -.6
\end{array}\right]
$$

- \mathbf{n} is a unit vector perpendicular to the dominant orientation.
- The notation [x]+ means x if $x>0$ else 0

The notation [x]- means x if $x<0$ else 0

- We can think of E^{+}and E^{-}as measures of how many gradient vectors in the window are on the positive side and how many are on the negative side of the dominant orientation in the window.

Scale Selection (continued)

- Texture scale selection is based on the derivative of the polarity with respect to scale σ.
- Algorithm:

1. Compute polarity at every pixel in the image for $\sigma_{k}=k / 2$, ($k=0,1 \ldots 7$).
2. Convolve each polarity image with a Gaussian with standard deviation 2 k to obtain a smoothed polarity image.
3. For each pixel, the selected scale is the first value of σ for which the difference between values of polarity at successive scales is less than 2 percent.

Texture Features Extraction

- Extract the texture features at the selected scale
- Polarity (polarity at the selected scale) : $p=p_{\sigma^{*}}$
- Anisotropy: a = $1-\lambda_{2} / \lambda_{1}$
λ_{1} and λ_{2} denote the eigenvalues of M_{σ}
$\lambda_{2} / \lambda_{1}$ measures the degree of orientation: when λ_{1} is large compared to λ_{2} the local neighborhood possesses a dominant orientation. When they are close, no dominant orientation. When they are small, the local neighborhood is constant.

- Local Contrast: $\mathrm{C}=2\left(\lambda_{1}+\lambda_{2}\right)^{3 / 2}$

A pixel is considered homogeneous if $\lambda 1+\lambda 2$ < a local threshold

Blobworld Segmentation Using Color and Texture

Application to Protein Crystal Images

Original image in PGM (Portable Gray Map) format

- K-mean clustering result (number of clusters is equal to 10 and similarity measure is Euclidean distance)
- Different colors represent different textures

Application to Protein Crystal Images

Original image in PGM (Portable Gray Map) format

- K-mean clustering result (number of clusters is equal to 10 and similarity measure is Euclidean distance)
- Different colors represent different textures

References

- Chad Carson, Serge Belongie, Hayit Greenspan, and Jitendra Malik. "Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying." IEEE Transactions on Pattern Analysis and Machine Intelligence 2002; Vol 24. pp. 1026-38.
- W. Forstner, "A Framework for Low Level Feature Extraction," Proc. European Conf. Computer Vision, pp. 383-394, 1994.

[^0]: Server Connected

