

Object Tracking, Trajectory Analysis and Event Detection in Intelligent Video Systems

Student: Hsu-Yung Cheng Advisor: Jenq-Neng Hwang, Professor **Department of Electrical Engineering University of Washington**

Outlines

- Motivation
- Object Tracking
- Trajectory Analysis
- Event Detection
- Conclusions and Future Work

Motivation

- Advantage of Video-based systems
 - Being able to capture a large variety of information
 - Relatively inexpensive
 - Easier to install, operate, and maintain

Applications

- Security surveillance
- Home care surveillance
- Intelligent transportation systems
- There is an urgent need for intelligent video systems to replace human operators to monitor the areas under surveillance.

System Modules for Intelligent Event Detection Systems

Challenges for Robust Tracking

- Segmentation errors
- Change of lighting conditions
 Shadows
- Occlusion

Inter-Object Occlusion

Initial Occlusion

Ú

Background Occlusion

Proposed Tracking Mechanism

Background Estimation and Updating

- Based on Gaussian mixture models [Stauffer 1999]
- Model the recent history of each pixel by a mixture of K Gaussian distributions.
- Every pixel value is checked among the existing K Gaussian distributions for a match.
- Update the weights for the K distributions and the parameters of the matched distribution
- The kth Gaussian is ranked by w_k / σ_k ($\sum_k = \sigma_k^2 I$)
- The top-ranked Gaussians are selected as the background models.
- Pixel values that belong to background models are accumulated and averaged as the background image.
- The background image is updated for every certain interval of time.

Moving Object Segmentation

- Based on background subtraction
- Fourth order moment
 - [S. Colonnese et al. Proc. of SPIE 2003]

$$\mu_d^{(4)}(x, y) = \frac{1}{N_\eta} \sum_{(s, t) \in \eta(x, y)} (diff _img(s, t) - \hat{m}_d)^4$$

Thresholding

$$S(x, y) = \begin{cases} 1, & \text{if } \mu_d^{(4)}(x, y) \ge \theta \\ 0, & \text{if } \mu_d^{(4)}(x, y) < \theta \end{cases}$$

Kalman Filter

- Kalman filters are modeled on a Markov chain built on linear operators perturbed by Gaussian noises.
 - At time *k*, each target has state x_k $x_k = F_k x_{k-1} + w_k$, where $w_k \sim N(0, Q_k)$ and observation (measurement) y_k $y_k = H_k x_k + v_k$, where $v_k \sim N(0, R_k)$

Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems," *Transactions of the ASME - Journal of Basic Engineering* Vol. 82: pp. 35-45, 1960.

Kalman Filter Phases

Kalman Filter Phases

Constructing Measurement Candidate List

Searching for measurement candidate representation points

Data Association

- To associate measurements with targets when performing updates
- Nearest Neighbor Data Association
 For all the measurement in the validation gate of a target, select the nearest measurement.

$$[y_{k} - H_{k} x_{k}]^{T} S_{k}^{-1} [y_{k} - H_{k} x_{k}] \leq \gamma^{2}$$

- Probabilistic Data Association (PDA)
- Joint Probabilistic Data Association (JPDA)

Probabilistic Data Association

$$\beta_{j} = P\{X_{j} | Y^{k}\}$$

$$\beta_{2} \land y_{2}$$

$$\beta_{1} \land y_{1} \land y_{3}$$

$$\beta_{3}$$

Consider a single target independently of others

 χ_j denotes the event that the j^{th} measurement belongs to that target.

Combined (Weighted) Innovation

$$\widetilde{y}_k = \sum_{j=1}^m \beta_j \widetilde{y}_{kj} = \sum_{j=1}^m \beta_j (y_{kj} - H_k \widehat{x}_{k|k-1})$$

Y. Bar-Shalom and E. Tse, "Tracking in a cluttered environment with probabilistic data association," *Automatica*, vol. 11, pp. 451-460, Sept. 1975.

Modified PDA for Video Object Tracking

• To handle video objects (regions), incorporate the following factor when computing β_j

$$\alpha \frac{Similarity_{j}}{\sum_{i=1}^{m} Similarity_{i}} + (1-\alpha) \frac{OverlapArea_{j}}{\sum_{i=1}^{m} OverlapArea_{i}}$$

 $0 < \alpha < 1$

• Similarity measure: cross correlation function

$$C_{R} = \frac{\sum_{m \in n} (A_{mn} - \overline{A})(B_{mn} - \overline{B})}{\sqrt{(\sum_{m \in n} (A_{mn} - \overline{A})^{2})(\sum_{m \in n} (\sum_{m \in n} (B_{mn} - \overline{B})^{2})}}$$

Experimental Videos

Vehicle Tracking Results 1

Vehicle Tracking Results 2

58

Human Tracking Results

Object Tracking Statistics

Video	Sequence 1	Sequence 2	Sequence 3	Sequence 4
Ground Truth	71	64	92	130
Object Detected	72	61	93	128
Miss	0	3	0	5
False Alarm	1	0	1	3
Correctly Detected	71	61	92	125
Correctly Tracked	70	58	92	120
Detection Precision	0.986	1.000	0.989	0.977
Detection Recall	1.000	0.953	1.000	0.962
Tracking Success Rate	0.986	0.951	1.000	0.960

Detection Precision =	Correctly Detected		
	Object Detected		

 $Detection Recall = \frac{Correctly Detected}{Ground Truth}$

 $Tracking \ Success \ Rate = \frac{Correctly \ Tracked}{Correctly \ Detected}$

Occluded Object Tracking Success Rate: 0.855

Trajectory Analysis

Class 1

Trajectory Smoothing

• Sample the trajectory

• Perform cubic spline interpolation

Angle Feature Extraction

Relative Angle

Absolute Angle

Hidden Markov Model

- N states S_i , $i=1,\ldots,N$
- **Transition probability** a_{ij}
- Initial probability π_i
- Observation symbol probability $b_j(k)$
- A complete model $\lambda = (A, B, \Pi)$

- $A = \{a_{ij}\}$ • $B = \{b_{jk}\}$
- $\blacksquare \Pi = \{\pi_i\}$

Sunny	Cloudy	Rainy
P(walk) = 0.5	P(walk) = 0.4	P(walk) = 0.2
P(bike) = 0.4	P(bike) = 0.3	P(bike) = 0.1
P(bus) = 0.1	P(bus) = 0.3	P(bus) = 0.7

Example of HMM

Observation sequence $O = \{ walk, bike, bus, bus, bike, walk, ... \}$

Three Problems in HMM

Given λ, compute the probability that O is generated by this model
 How likely did *O* happen at this place? forward-backward algorithm

Given λ, find the most likely sequence of hidden states that could have generated O
 How did the weather change day-by-day? Viterbi algorithm

Given a set of O, learn the most likely λ
 Train the parameters of the HMM
 Baum-Welch algorithm

Left-to-right HMM for Trajectory Classification

K-means Clustering of Feature Points

Number of Training and Test sequences

Video for both training and testing

Video for testing only

Trajectory Class	Training Trajectories	Testing Objects	Testing Trajectories
Class 1	12	64	307
Class 2	11	18	66
Class 3	13	27	27
Class 4	5	20	20
Class 5	8	26	32
Class 6	8	29	45

Trajectory Classification Statistics

	C 1	C 2	C 3	C 4	C 5	C 6	Accuracy
Class 1	307	0	0	0	0	0	100%
Class 2	0	64	0	0	0	2	97.4%
Class 3	2	0	25	0	0	0	92.6%
Class 4	0	0	0	20	0	0	100%
Class 5	1	0	0	0	31	0	96.8%
Class 6	0	2	0	0	0	43	95.5%

Anomalous Trajectories

Event Detection

Type I Events

- Simple rule-based decision logic
- Entering a dangerous region
- Stopping in the scene
- Driving on the road shoulder

Type II Events

- Based on trajectory classification results via HMM using angle features
- Illegal U-turns or left turns
- Anomalous trajectories

Type III Events

- Based on trajectory classification results via HMM using speed features
- Speed change

Conclusions and Future Works

Tracking

Kalman filtering for prediction

Modified PDA for data association

Basic Events

Simple rule-based decision logic

• HMM

Higher Level Events

Combining basic events

More flexible models

