How do we estimate the Second Derivative?

- Laplacian Filter: $\nabla^{2} f=\partial^{2} f / \partial x^{2}+\partial^{2} f / \partial y^{2}$

$$
\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}
$$

- Standard mask implementation
- Derivation: In 1D, the first derivative can be computed with mask [-1 0 1]
- The 1D second derivative is [1-2 1]
- The Laplacian mask estimates the 2D second derivative.

How did you get those masks?

```
1D function f(x)
[f(-1) f(0) f(1)] pixel values
    f(0)-f(-1) f(1)-f(0) first difference
(f(1)-f(0))-(f(0)-f(-1)) second difference
    1f(-1)-2f(0)+1f(1) simplify
[\begin{array}{lll}{1}&{-2}&{1] mask}\end{array}]
```


and in 2D

	$f(0,1)$	
$f(-1,0)$	$f(0,0)$	$f(1,0)$
	$f(0,-1)$	

$$
\begin{aligned}
& \partial f / \partial x(1 / 2)=f(1,0)-f(0,0) \\
& \partial f / \partial x(-1 / 2)=f(0,0)-f(-1,0)
\end{aligned}
$$

$$
\begin{aligned}
& \partial f / \partial x^{2}=f(1,0)-2 f(0,0)+f(-1,0) \\
& \partial f / \partial y^{2}=f(0,1)-2 f(0,0)+f(0,-1) \\
& \nabla^{2} f=\partial f / \partial x^{2}+\partial f / \partial y^{2} \\
&=1 f(1,0)-4 f(0,0)+1 f((-1,0)+1 f(0,1)+1 f(0,-1) \\
& \begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}
\end{aligned}
$$

