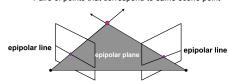


Stereo correspondence

Determine Pixel Correspondence

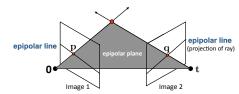
· Pairs of points that correspond to same scene point



Epipolar Constraint

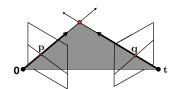
- Reduces correspondence problem to 1D search along conjugate epipolar lines
- Java demo: http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Fundamental matrix



- This <code>epipolar</code> geometry of two views is described by a Very Special 3x3 matrix F , called the <code>fundamental</code> matrix
- \mathbf{F} maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$ is: ${f Fp}$
- Epipolar constraint on corresponding points: $\mathbf{q}^T\mathbf{F}\mathbf{p}=0$

Fundamental matrix – uncalibrated case



 \mathbf{K}_1 : intrinsics of camera 1

 \mathbf{K}_2 : intrinsics of camera 2

 ${f R}\;$: rotation of image 2 w.r.t. camera 1

$$\mathbf{q}^T \mathbf{K}_2^{-T} \mathbf{R} \left[\mathbf{t} \right]_{\times} \mathbf{K}_1^{-1} \mathbf{p} = 0$$

$$\mathbf{F} \longleftarrow \text{the Fundamental matrix}$$

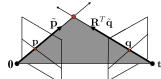
Cross-product as linear operator

Useful fact: Cross product with a vector ${\bf t}$ can be represented as multiplication with a (skew-symmetric) 3x3 matrix

$$\begin{bmatrix} \mathbf{t} \end{bmatrix}_{\times} = \begin{bmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{bmatrix}$$

$$\mathbf{t} imes ilde{\mathbf{p}} = [\mathbf{t}]_{ imes} ilde{\mathbf{p}}$$

Fundamental matrix – calibrated case



 $ilde{\mathbf{p}} = \mathbf{K}_1^{-1} \mathbf{p}$: ray through \mathbf{p} in camera 1's (and world) coordinate system

 $ilde{\mathbf{q}} = \mathbf{K}_2^{-1} \mathbf{q}$: ray through \mathbf{q} in camera 2's coordinate system

$$\tilde{\mathbf{q}}^T \mathbf{R}[\mathbf{t}]_{\underline{\times}} \tilde{\mathbf{p}} = 0 \quad \tilde{\mathbf{q}}^T \mathbf{E} \tilde{\mathbf{p}} = 0$$

 \mathbf{E} the Essential matrix

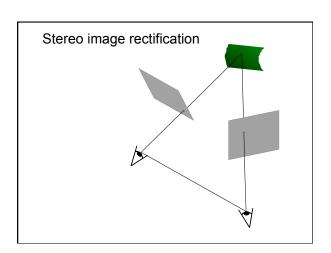
Properties of the Fundamental Matrix

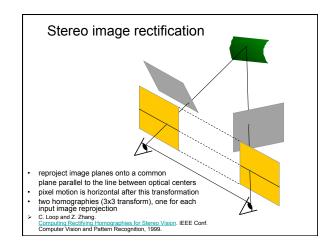
- ullet ${f F}{f p}$ is the epipolar line associated with ${f p}$
- ullet $\mathbf{F}^T\mathbf{q}$ is the epipolar line associated with \mathbf{q}
- $\mathbf{F}\mathbf{e}_1 = \mathbf{0}$ and $\mathbf{F}^T\mathbf{e}_2 = \mathbf{0}$
- $oldsymbol{\cdot}$ $oldsymbol{F}$ is rank 2
- How many parameters does **F** have?

Rectified case



$$\mathbf{R} = \mathbf{I}_{3\times3} \\ \mathbf{t} = [\ 1 \quad 0 \quad 0 \]^T \qquad \mathbf{E} = \begin{bmatrix} \ 0 & 0 & 0 \\ \ 0 & 0 & -1 \\ \ 0 & 1 & 0 \end{bmatrix}$$





Estimating **F**

- If we don't know \mathbf{K}_1 , \mathbf{K}_2 , \mathbf{R} , or \mathbf{t} , can we estimate \mathbf{F} for two images?
- Yes, given enough correspondences. We'll see soon...

Stereo Matching

Given a pixel in the left image, how to find its match?

Assume the photos have been rectified

Your basic stereo algorithm

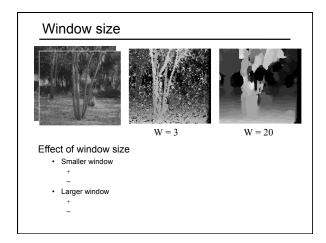
For each epipolar line

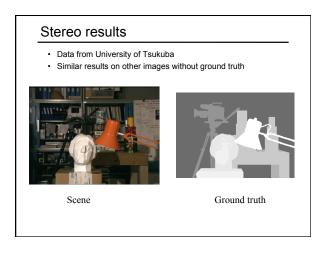
For each pixel in the left image

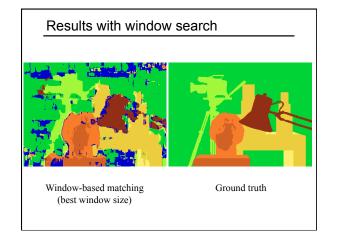
- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

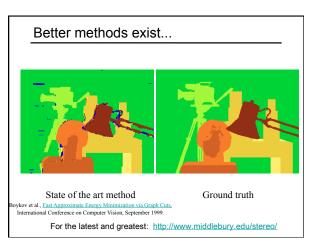
Improvement: match windows

This should look familar...

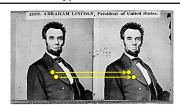








Stereo as energy minimization



What defines a good stereo correspondence?

- 1. Match quality
 - Want each pixel to find a good match in the other image
- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

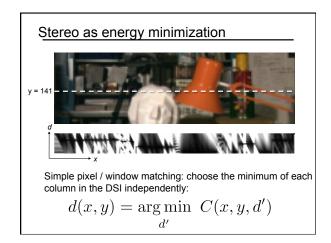
Stereo as energy minimization

- Find disparity map d that minimizes an energy function E(d)

- Simple pixel / window matching
$$E(d) = \sum_{(x,y) \in I} C(x,y,d(x,y))$$

 $C(x,y,d(x,y)) = \underset{\text{windows }\textit{I(x, y)}}{\text{SSD distance between}}$ d(x,y), y)

Stereo as energy minimization J(x, y)C(x, y, d); the disparity space image (DSI)



Stereo as energy minimization

Better objective function

$$E(d) = E_d(d) + \lambda E_s(d)$$

Want each pixel to find a good match in the other image

Adjacent pixels should (usually) move about the same amount

Stereo as energy minimization

$$E(d) = E_d(d) + \lambda E_s(d)$$

 $\text{match cost:} \quad E_d(d) = \sum_{(x,y) \in I} C(x,y,d(x,y))$

 $\underset{\text{cost:}}{\text{smoothness}} \quad E_s(d) = \sum_{(p,q) \in \mathcal{E}} V(d_p, d_q)$

E : set of neighboring pixels

4-connected
neighborhood
neighborhood
neighborhood

Smoothness cost

$$E_s(d) = \sum_{(p,q)\in\mathcal{E}} V(d_p, d_q)$$

How do we choose *V*?

$$V(d_p, d_q) = |d_p - d_q|$$

$$L_1 \text{ distance}$$

$$0 \quad \text{if } d_p = d_q$$

 $V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$

"Potts model"

Dynamic programming

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline using dynamic programming (DP)

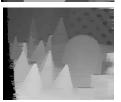
D(x,y,d) : minimum cost of solution such that $\emph{d}(\emph{x},\emph{y})$ = \emph{d}

 $D(x,y,d) = C(x,y,d) + \min_{d'} \left\{ D(x-1,y,d') + \lambda \, |d-d'| \right\}$

Dynamic programming

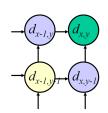
Finds "smooth" path through DPI from left to right

Dynamic Programming



Dynamic programming

Can we apply this trick in 2D as well?



No: $d_{x,y-1}$ and $d_{x-1,y}$ may depend on different values of $d_{x-1,y-1}$

Slide credit: D. Huttenloche

Stereo as a minimization problem

$$E(d) = E_d(d) + \lambda E_s(d)$$

The 2D problem has many local minima

Gradient descent doesn't work well

And a large search space

- n x m image w/ k disparities has knm possible solutions
- Finding the global minimum is NP-hard in general

Stereo as global optimization

Expressing this mathematically

- 1. Match quality
 - Want each pixel to find a good match in the other image $matchCost = \sum_{x,y} \|I(x,y) - J(x + d_{xy},y)\|$
- - If two pixels are adjacent, they should (usually) move about the same amount

the same amount
$$smoothnessCost = \sum_{neighbor\ pixels\ p,q} |d_p - d_q|$$

We want to minimize sum of these two cost terms

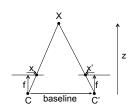
- This is a special type of cost function known as an MRF (Markov Random Field)
 - Effective and fast algorithms have been recently developed:

 - » Graph cuts, belief propagation....
 » for more details (and code): http://vision.middlebury.edu/MRF/

Middlebury Stereo Evaluation

http://vision.middlebury.edu/stereo/

Depth from disparity



$$disparity = x - x' = \frac{baseline*f}{z}$$

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/nroiects/meteorshat/index

Used for robot navigation (and other tasks)

Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

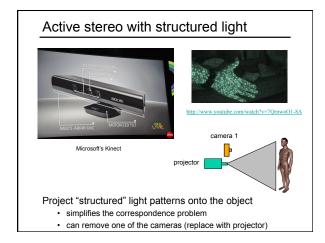
Stereo reconstruction pipeline

Steps

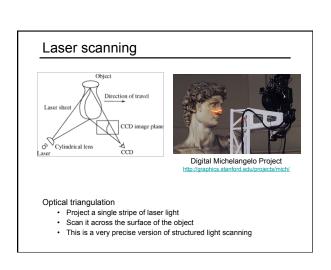
- · Calibrate cameras
- · Rectify images
- · Compute disparity
- Estimate depth

What will cause errors?

- · Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- · Large motions
- · Low-contrast image regions



Active stereo with structured light Surface e_i e_{i+1} Illuminant Camera



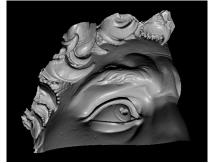
Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

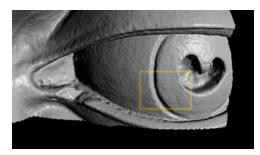
The Digital Michelangelo Project, Levoy et al.

Laser scanned models



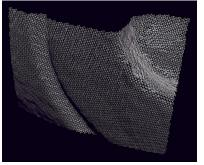
The Digital Michelangelo Project, Levoy et al.

Laser scanned models



The Digital Michelangelo Project, Levoy et al.

Laser scanned models



The Digital Michelangelo Project, Levoy et al.

Estimating **F**

- If we don't know K₁, K₂, R, or t, can we estimate F for two images?
- Yes, given enough correspondences

Estimating F – 8-point algorithm

• The fundamental matrix F is defined by

$$\mathbf{x'}^{\mathrm{T}}\mathbf{F}\mathbf{x} = 0$$

for any pair of matches x and x' in two images.

• Let $\mathbf{x} = (u, v, 1)^{\mathsf{T}}$ and $\mathbf{x}' = (u', v', 1)^{\mathsf{T}}$, $\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$ each match gives a linear equation

$$uu'\,f_{11} + vu'\,f_{12} + u'\,f_{13} + uv'\,f_{21} + vv'\,f_{22} + v'\,f_{23} + uf_{31} + vf_{32} + f_{33} = 0$$

8-point algorithm

$$\begin{bmatrix} u_1u_1' & v_1u_1' & u_1' & u_1v_1' & v_1v_1' & v_1' & u_1 & v_1 & 1 \\ u_2u_2' & v_2u_2' & u_2' & u_2v_2' & v_2v_2' & v_2' & u_2 & v_2 & 1 \\ \vdots & \vdots \\ u_nu_n' & v_nu_n' & u_n' & u_nv_n' & v_nv_n' & v_n' & u_n & v_n & 1 \end{bmatrix} \begin{bmatrix} f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix} = 0$$

• In reality, instead of solving $\mathbf{Af} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{Af}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

8-point algorithm - Problem?

- F should have rank 2
- To enforce that **F** is of rank 2, **F** is replaced by **F**' that minimizes $\|\mathbf{F} \mathbf{F}'\|$ subject to the rank constraint.
- This is achieved by SVD. Let $\mathbf{F} = \mathbf{U}\Sigma\mathbf{V}$, where

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}, \text{ let } \quad \Sigma' = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

then $\mathbf{F'} = \mathbf{U} \Sigma' \mathbf{V}^{\mathrm{T}}$ is the solution.

8-point algorithm

% Build the constraint matrix $\begin{array}{lll} A = \{x2(1,:)'.*x1(1,:)' & x2(1,:)'.*x1(2,:)' & x2(1,:)' & \dots \\ & x2(2,:)'.*x1(1,:)' & x2(2,:)'.*x1(2,:)' & x2(2,:)' & \dots \\ & x1(1,:)' & x1(2,:)' & ones(npts,1) \]; \end{array}$

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)';

% Enforce rank2 constraint [U,D,V] = svd(F); F = U*diag([D(1,1) D(2,2) 0])*V';

8-point algorithm

- Pros: it is linear, easy to implement and fast
- Cons: susceptible to noise