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Stereo

Single image stereogram, by Nikla
Readings
« Trucco & Verri, Chapter 7

— Read through 7.1,7.2.1,7.22,7.31,732,73.7and 7.4, 7.4.1.
— The rest is optional.

: S Nl
Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923 Teesta suspension bridge-Darjeeling, India




5/20/13

Woman getting eye exam during immigration procedure at Ellis
Island, c. 1905 - 1920, UCR Museum of Phography

Mark Twain at Pool Table", no date, UCR Museum of Photography

Stereo Stereo

scene point

-
<_image|plane

o
optical center
Basic Principle: Triangulation
< Gives reconstruction as intersection of two rays
* Requires
— camera pose (calibration)
— point correspondence
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Stereo correspondence

Determine Pixel Correspondence
« Pairs of points that correspond to same scene point

epipolar line
epipolar plane Pip

epipolar line '

Epipolar Constraint

Reduces correspondence problem to 1D search along conjugate
epipolar lines
Java demo: http://www.ai.sri.com/~luong/research/Meta3DVif pipolarGeo.html

Fundamental matrix

epipolar line

epipolar line (projection of ray)

'
Image 2

.
Image 1

This epipolar geometry of two views is described by a Very
Special 3x3 matrix F', called the fundamental matrix

F maps (homogeneous) points in image 1 to lines in image 2!
The epipolar line (in image 2) of point p is: Fp

T
Epipolar constraint on corresponding points: Fp =0

Fundamental matrix — uncalibrated case

Kl s intrinsics of camera 1 K2 s intrinsics of camera 2

R : rotation of image 2 w.r.t. camera 1

q'K;'R[t], Ki'p=0

T «<—— the Fundamental matrix

Cross-product as linear operator

Useful fact: Cross product with a vector t can be represented as
multiplication with a (skew-symmetric) 3x3 matrix

0 —t. t,
t, =1t 0 —t
—~t, t, O
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Fundamental matrix — calibrated case

: ray through q in camera 2’s coordinate system

Q' R[t], p=0
q []X qTEISZO

E =< the Essential matrix

Properties of the Fundamental Matrix

e F'p is the epipolar line associated with P

FTq is the epipolar line associated with 4

Fe1 =0 and FTGQ =0

e Fisrank2

* How many parameters does F have?

Rectified case

7 &/
\VARV/

Stereo image rectification

N
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Stereo image rectification

« reproject image planes onto a common
plane parallel to the line between optical centers

« pixel motion is horizontal after this transformation

+ two homographies (3x3 transform), one for each
input image reprojection

> C.Loop and Z. Zhang.
Computing Rectifying Homographies for Stereo Vision. IEEE Conf.

Computer Vision and Pattern Recognition, 1999.

Estimating F

* If we don’t know K,, K,, R, or t, can we
estimate F for two images?

* Yes, given enough correspondences. We'll see
soon...

Stereo Matching

77 HON. ADRATIAM LINCOLN,

Given a pixel in the left image, how to find its match?
« Assume the photos have been rectified

Your basic stereo algorithm

7T HON. ADRATIAM LIN¢

President of United States. -'7-
3 ? I

For each epipolar line
For each pixel in the left image
« compare with every pixel on same epipolar line in right image
« pick pixel with minimum match cost
Improvement: match windows
«  This should look familar...
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Window size Stereo results

« Data from University of Tsukuba
« Similar results on other images without ground truth

Effect of window size

* Smaller window
+

« Larger window
+

Scene Ground truth

Results with window search Better methods exist...

Window-based matching Ground truth State of the art method Ground truth

(best WindOW size) [Boykov et al., Fast. Energ via Graph Cuts,
International Conference on Computer Vision, September 1999.

For the latest and greatest: http://www.middlebury.edu/stereo/
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Stereo as energy minimization

[T HON. ADRATIAM LINCOLN, President of United States. —.7—
| R |
4

What defines a good stereo correspondence?
1. Match quality
—  Want each pixel to find a good match in the other image
2. Smoothness

—  If two pixels are adjacent, they should (usually) move about
the same amount

Stereo as energy minimization

* Find disparity map d that minimizes an
energy function E(d)

 Simple pixel / window matching

Y Cla,y,dlx,y))

(z,y)el

— SSD distance between
C(:C, Y d(a:’ y)) ~ windows /(x, y) and J(x +

ax.y), y)

Stereo as energy minimization

Stereo as energy minimization

y =141

| 43

Simple pixel / window matching: choose the minimum of each
column in the DSI independently:

d(a?7y) = arg min C(il?, y7d/)
d/

d
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Stereo as energy minimization

Better objective function

E(d) = Ea(d) + AE,(d)

match cost smoothness cost
Want each pixel to find a good

Adjacent pixels should
match in the other image

(usually) move about the same
amount

Stereo as energy minimization

E(d) = Ea(d) + AE,(d)

match cost:  F;(d) = Z C(x,y,d(z,y))

(z,y)erl
smoothness Es(d): Z V(dp,dq)
cost:
(p.@)e€

. e,
.o
® o

4-connected  8-connected
neighborhood  neighborhood

5 : set of neighboring pixels

Smoothness cost

Eg(d) = Z V(dp, dg)

(p,q)€E

How do we choose V?

V(dpvdq) - ’dp - dq|

L, distance
0 ifd,=d
Vidpd) =3 4y # i —H—
P q
“Potts model”

Dynamic programming

E(d) = Ea(d) + AE,(d)

Can minimize this independently per scanline using
dynamic programming (DP) .00

D(z,y,d) : minimum cost of solution such that d(x,y) = d

D(z,y,d) = C(x,y,d) + min {D(z - 1,y,d)+ X|d—d'[}
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Dynamic programming

y =141

L)

Finds “smooth” path through DPI from left to right

d

Dynamic Programming

Dynamic programming

Can we apply this trick in 2D as well?

i

No: d, ., and d,.; , may depend on different values of d,; .4

Slide credit: D. Huttenlochg

Stereo as a minimization problem

E(d) = Ea(d) + AE,(d)

The 2D problem has many local minima
« Gradient descent doesn’t work well

And a large search space
* nxmimage w/ k disparities has k™™ possible solutions
+ Finding the global minimum is NP-hard in general
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Stereo as global optimization

Expressing this mathematically
1. Match quality
—  Want each pixel to find a good match in the other image
matchCost =>_ |[I(z,y) — J(z + duy,y)||
Zy

2. Smoothness
—  If two pixels are adjacent, they should (usually) move about
the same amount

smoothnessCost = Z |11 P dq‘

neighbor pizels p,q

We want to minimize sum of these two cost terms
« This is a special type of cost function known as an
MRF (Markov Random Field)
— Effective and fast algorithms have been recently developed:
»  Graph cuts, belief propagation....
»  for more details (and code): http://vision.middlebury.edu/MRF/

Middlebury Stereo Evaluation

http://vision.middlebury.edu/stereo/

38

Depth from disparity

c baseline ¢

; o — 1 _ baselinexf
disparity =x — o' = = _—+

Real-time stereo

Nomad robot searches for meteorites in Antartica

http:/www.frc.ri.cmu. robot/index.html

Used for robot navigation (and other tasks)

» Several software-based real-time stereo techniques have
been developed (most based on simple discrete search)

10



5/20/13

Stereo reconstruction pipeline

Steps
« Calibrate cameras
« Rectify images
« Compute disparity
« Estimate depth

What will cause errors?

« Camera calibration errors

« Poor image resolution

» Occlusions

« Violations of brightness constancy (specular reflections)
« Large motions

« Low-contrast image regions

Active stereo with structured light

http://www.youtube com/watch?v=7QmwoO1-8A

camera 1
Microsoft's Kinect D,

projector

Project “structured” light patterns onto the object
+ simplifies the correspondence problem
« can remove one of the cameras (replace with projector)

Active stereo with structured light

Surface

q,‘/ 91 € \Ciy

& ~4

Iluminant Camera

Laser scanning

Object

Direction of travel
_—

Laser sheet
CCD image planc|

& Y Cylindrical lens a
Laser CCD

N

Digital Michelangelo Project
http: ics.stanford !

Opttical triangulation
« Project a single stripe of laser light
« Scan it across the surface of the object
« This is a very precise version of structured light scanning

11
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Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

The Digital Michelangelo Project, Levoy et al.

12
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Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Estimating F

* If we don’t know K, K,, R, or t, can we
estimate F for two images?

* Yes, given enough correspondences

Estimating F — 8-point algorithm

* The fundamental matrix F is defined by

x"Fx=0
for any pair of matches x and x’ in two images.
S So S
e Letx=(u,v,1)"and x’=(u’v,1)T, F=|fo Jfo fn
S S fn

each match gives a linear equation

un' fi +vu' fi, ' fry +uv' o+ o V' oy +ufy + v + f3,=0

8-point algorithm

wu,” v, ow’ owyv,” vy, v ou v

uu,” vou, uy, wyv,” vt v, u, v, 1

Ju
Jiz
Jis
Sa
S
S
Ja
S
S

* In reality, instead of solving Af =0, we seek f

to minimize |Af|, least eigenvector of A"A.

13
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8-point algorithm — Problem?

* Fshould have rank 2

* To enforce that Fis of rank 2, F is replaced by F’ that
minimizes |F - F' subject to the rank constraint.

« This is achieved by SVD. Let F = UZV, where

o 0 0 o 0 0
s={0 o, o' =_|0 o, o
0 0 o 0 0 0

then F'= UX'V " is the solution.

8-point algorithm

% Build the constraint matrix
A=[x2(1,:)*x1(1,:)" x2(1,:)".*x1(2,:)" x2(1,:)" ...
x2(2,:)' *x1(1,:)" x2(2,:)".*x1(2,:)" x2(2,:)" ...
x1(1,:)' x1(2,:)' ones(npts,1) ];

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V
% corresponding to the smallest singular value.
F = reshape(V(:,9),3,3)";

% Enforce rank2 constraint
[U,D,V] = svd(F);
F = U*diag([D(1,1) D(2,2) O])*V";

8-point algorithm

* Pros: it is linear, easy to implement and fast
* Cons: susceptible to noise

14



