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Why	  do	  we	  perceive	  depth?	  



What do humans use as depth cues? 

Convergence  
When watching an object close to us, our eyes point slightly inward. This difference in the direction of the 
eyes is called convergence. This depth cue is effective only on short distances (less than 10 meters).  

Marko Teittinen  http://www.hitl.washington.edu/scivw/EVE/III.A.1.c.DepthCues.html  

Motion 

Focus 

Binocular Parallax  
As our eyes see the world from slightly different locations, the images sensed by the eyes are slightly 
different. This difference in the sensed images is called binocular parallax. Human visual system is very 
sensitive to these differences, and binocular parallax is the most important depth cue for medium viewing 
distances. The sense of depth can be achieved using binocular parallax even if all other depth cues are 
removed.  
 Monocular Movement Parallax  
If we close one of our eyes, we can perceive depth by moving our head. This happens because human visual 
system can extract depth information in two similar images sensed after each other, in the same way it can 
combine two images from different eyes.  
 

Accommodation 
Accommodation is the tension of the muscle that changes the focal length of the lens of eye. Thus it brings 
into focus objects at different distances. This depth cue is quite weak, and it is effective only at short 
viewing distances (less than 2 meters) and with other cues.  



What do humans use as depth cues? 

Shades and Shadows  
When we know the location of a light source and see objects casting shadows on other 
objects, we learn that the object shadowing the other is closer to the light source. As most 
illumination comes downward we tend to resolve ambiguities using this information. The 
three dimensional looking computer user interfaces are a nice example on this. Also, 
bright objects seem to be closer to the observer than dark ones.  

Marko Teittinen  http://www.hitl.washington.edu/scivw/EVE/III.A.1.c.DepthCues.html  

Image cues 
Retinal Image Size  
When the real size of the object is known, our brain compares the sensed size of the 
object to this real size, and thus acquires information about the distance of the 
object.  
Linear Perspective  
When looking down a straight level road we see the parallel sides of the road meet in 
the horizon. This effect is often visible in photos and it is an important depth cue. It 
is called linear perspective.  
Texture Gradient  
The closer we are to an object the more detail we can see of its surface texture. So 
objects with smooth textures are usually interpreted being farther away. This is 
especially true if the surface texture spans all the distance from near to far.  

Overlapping  
When objects block each other out of our sight, we know that the object that blocks 
the other one is closer to us. The object whose outline pattern looks more continuous 
is felt to lie closer.  

Aerial Haze 
The mountains in the horizon look always slightly bluish or hazy. The reason for this 
are small water and dust particles in the air between the eye and the mountains. The 
farther the mountains, the hazier they look.  
 

Jonathan Chiu  
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Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.



Amount of horizontal movement is … 
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…inversely proportional to the distance from the camera 



Cameras 

Thin lens equation: 
 

•  Any object point satisfying this equation is in focus 



Depth from Stereo 
Goal: recover depth by finding image coordinate 

x’ that corresponds to x 
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Depth from disparity 
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Depth from Stereo 
Goal: recover depth by finding image coordinate x’ that 

corresponds to x 
Sub-Problems 

1.  Calibration: How do we recover the relation of the 
cameras (if not already known)? 

2.  Correspondence: How do we search for the matching 
point x’? 
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Correspondence Problem 

 
We have two images taken from cameras with different 

intrinsic and extrinsic parameters 
 
How do we match a point in the first image to a point in the 

second?  How can we constrain our search? 

x ? 



Potential matches for x have to lie on the corresponding line l’. 

Potential matches for x’ have to lie on the corresponding line l. 

Key idea: Epipolar constraint 
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•  Epipolar Plane – plane containing baseline (1D family) 

•  Epipoles  
= intersections of baseline with image planes  
= projections of the other camera center 

•  Baseline – line connecting the two camera centers 

Epipolar geometry: notation 
X 

x x’ 



•  Epipolar Lines - intersections of epipolar plane with image 
  planes (always come in corresponding pairs) 

Epipolar geometry: notation 
X 

x x’ 

•  Epipolar Plane – plane containing baseline (1D family) 

•  Epipoles  
= intersections of baseline with image planes  
= projections of the other camera center 

•  Baseline – line connecting the two camera centers 



Example: Converging cameras 



Example: Motion parallel to image plane 



Example: Forward motion 
 
 

 What would the epipolar lines look like if the camera 
moves directly forward? 



Example: Motion perpendicular to image plane 



Example: Motion perpendicular to image plane 

•  Points move along lines radiating from the epipole: “focus of expansion” 
•  Epipole is the principal point 
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Example: Forward motion 

Epipole has same coordinates in 
both images. 
Points move along lines radiating 
from  “Focus of expansion” 



Epipolar constraint 

•  If we observe a point x in one image, where can the 
corresponding point x’ be in the other image? 
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•   Potential matches for x have to lie on the corresponding  
epipolar line l’. 

•   Potential matches for x’ have to lie on the corresponding  
epipolar line l. 

Epipolar constraint 
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Epipolar constraint example 



Camera parameters 
How many numbers do we need to describe a 
camera? 
 

•  We need to describe its pose in the world 
•  We need to describe its internal parameters 



A Tale of Two Coordinate Systems 

“The World” 

Camera 
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Two important coordinate systems: 
    1. World coordinate system 
    2. Camera coordinate system 



Camera parameters 
• To project a point (x,y,z) in world coordinates into a 
camera 
• First transform (x,y,z) into camera coordinates 
• Need to know 
–  Camera position (in world coordinates) 
–  Camera orientation (in world coordinates) 

• Then project into the image plane 
–  Need to know camera intrinsics 

• These can all be described with matrices 



Camera parameters 
A camera is described by several parameters 
•  Translation T of the optical center from the origin of world coords 
•  Rotation R of the image plane 
•  focal length f, principle point (x’c, y’c), pixel size (sx, sy) 
•  blue parameters are called “extrinsics,”  red are “intrinsics” 

•  The definitions of these parameters are not completely standardized 
–  especially intrinsics—varies from one book to another 

Projection equation 
 
 
 
•  The projection matrix models the cumulative effect of all parameters 
•  Useful to decompose into a series of operations 

projection intrinsics rotation translation 

identity matrix 



Extrinsics	  

How	  do	  we	  get	  the	  camera	  to	  “canonical	  form”?	  
•  (Center	  of	  projecHon	  at	  the	  origin,	  x-‐axis	  points	  right,	  y-‐axis	  points	  up,	  z-‐

axis	  points	  backwards)	  

0	  

Step	  1:	  Translate	  by	  -‐c	  



Extrinsics	  

How	  do	  we	  get	  the	  camera	  to	  “canonical	  form”?	  
•  (Center	  of	  projecHon	  at	  the	  origin,	  x-‐axis	  points	  right,	  y-‐axis	  points	  up,	  z-‐

axis	  points	  backwards)	  

0	  

Step	  1:	  Translate	  by	  -‐c	  
	  

How	  do	  we	  represent	  
translaHon	  as	  a	  matrix	  
mulHplicaHon?	  



Extrinsics	  

How	  do	  we	  get	  the	  camera	  to	  “canonical	  form”?	  
•  (Center	  of	  projecHon	  at	  the	  origin,	  x-‐axis	  points	  right,	  y-‐axis	  points	  up,	  z-‐

axis	  points	  backwards)	  

0	  

Step	  1:	  Translate	  by	  -‐c	  
Step	  2:	  Rotate	  by	  R	  

3x3	  rotaHon	  matrix	  



Extrinsics	  
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PerspecHve	  projecHon	  

(intrinsics)	  

in	  general,	  	  

:	  aspect	  ra+o	  (1	  unless	  pixels	  are	  not	  square)	  

:	  skew	  (0	  unless	  pixels	  are	  shaped	  like	  rhombi/parallelograms)	  

:	  principal	  point	  ((0,0)	  unless	  opHcal	  axis	  doesn’t	  intersect	  projecHon	  plane	  at	  origin)	  

(upper	  triangular	  
matrix)	  

(converts	  from	  3D	  rays	  in	  camera	  
coordinate	  system	  to	  pixel	  coordinates)	  



ProjecHon	  matrix	  

translaHon	  rotaHon	  projecHon	  
intrinsics	  



ProjecHon	  matrix	  

0	  

=	  

(in	  homogeneous	  image	  coordinates)	  



Epipolar constraint example 
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Epipolar constraint: Calibrated case 

•  Assume that the intrinsic and extrinsic parameters of the 
cameras are known 

•  We can multiply the projection matrix of each camera (and the 
image points) by the inverse of the calibration matrix to get 
normalized image coordinates 

•  We can also set the global coordinate system to the coordinate 
system of the first camera. Then the projection matrices of the 
two cameras can be written as [I | 0] and [R | t] 



X 

x x’ = Rx+t 

Epipolar constraint: Calibrated case 

R 
t 

The vectors Rx, t, and x’ are coplanar  

= (x,1)T 



Essential Matrix 
(Longuet-Higgins, 1981) 

Epipolar constraint: Calibrated case 

0])([ =×⋅ʹ′ xRtx RtExEx T ][with0 ×==ʹ′
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The vectors Rx, t, and x’ are coplanar  



X 
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Epipolar constraint: Calibrated case 

•  E x is the epipolar line associated with x (l' = E x) 
•  ETx' is the epipolar line associated with x' (l = ETx') 
•  E e = 0   and   ETe' = 0 
•  E is singular (rank two) 
•  E has five degrees of freedom  

0])([ =×⋅ʹ′ xRtx RtExEx T ][with0 ×==ʹ′



Epipolar constraint: Uncalibrated case 

•  The calibration matrices K and K’ of the two cameras 
are unknown 

•  We can write the epipolar constraint in terms of 
unknown normalized coordinates: 
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Epipolar constraint: Uncalibrated case 
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Fundamental Matrix 
(Faugeras and Luong, 1992) 
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Epipolar constraint: Uncalibrated case 

•  F x  is the epipolar line associated with x (l' = F x) 
•  FTx'  is the epipolar line associated with x' (l' = FTx') 
•  F e = 0   and   FTe' = 0 
•  F is singular (rank two) 
•  F has seven degrees of freedom 

X 
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0ˆˆ =ʹ′ xEx T 1with0 −−ʹ′==ʹ′ KEKFxFx TT



The eight-point algorithm 

Minimize: 

under the constraint 
||F||2=1 
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