Recognition Part I

CSE 576

What we have seen so far: Vision as Measurement Device

Real-time stereo on Mars

Physics-based Vision

Structure from Motion

Virtualized Reality Slide Credit: Alyosha

Visual Recognition

- What does it mean to "see"?
- "What" is "where", Marr 1982
- Get computers to "see"

Visual Recognition

Verification

Visual Recognition

Classification:

Is there a car in this picture?

Visual Recognition

Detection:

Where is the car in this picture?

Visual Recognition

Pose Estimation:

Visual Recognition

Activity Recognition:

Visual Recognition

Object Categorization:

Visual Recognition

Segmentation

Sky

Car

Object recognition Is it really so hard?

This is a chair

Find the chair in this image

Output of normalized correlation

Object recognition Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to make it

Challenges 1: view point variation

Challenges 2: illumination

Challenges 3: occusion

Challenges 4: scale

Challenges 5: deformation

Xu, Beihong 1943

Challenges 6: background clutter

Klimt, 1913

Challenges 7: object intra-class variation

slide by Fei-Fei, Fergus \& Torralba

Let's start with finding Faces

How to tell if a face is present?

One simple method: skin detection

Skin pixels have a distinctive range of colors

- Corresponds to region(s) in RGB color space
- for visualization, only R and G components are shown above

Skin classifier

- A pixel $X=(R, G, B)$ is skin if it is in the skin region
- But how to find this region?

Skin detection

Learn the skin region from examples

- Manually label pixels in one or more "training images" as skin or not skin
- Plot the training data in RGB space
- skin pixels shown in orange, non-skin pixels shown in blue
- some skin pixels may be outside the region, non-skin pixels inside. Why?

Skin classifier

- Given $X=(R, G, B)$: how to determine if it is skin or not?

Skin classification techniques

Skin classifier

- Given $X=(R, G, B)$: how to determine if it is skin or not?
- Nearest neighbor
- find labeled pixel closest to X
- choose the label for that pixel
- Data modeling
- Model the distribution that generates the data (Generative)
- Model the boundary (Discriminative)

Classification

- Probabilistic
- Supervised Learning
- Discriminative vs. Generative
- Ensemble methods
- Linear models
- Non-linear models

Let's play with probability for a bit

Remembering simple stuff

Probability

Basic probability

- X is a random variable
- $P(X)$ is the probability that X achieves a certain value

- $0 \leq P(X) \leq 1$
- $\begin{gathered}\int_{-\infty}^{\infty} P(X) d X=1 \\ \text { continuous } \mathrm{X}\end{gathered} \quad$ or $\quad \begin{gathered}\sum P(X)=1 \\ \text { discrete } \mathrm{X}\end{gathered}$
- Conditional probability: $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$
- probability of X given that we already know Y

Thumbtack \& Probabilities

$P($ Heads $)=\theta, P($ Tails $)=1-\theta$

Flips are i.i.d.:

- Independent events $D=\left\{x_{i} \mid i=1 \ldots n\right\}, P(D \mid \theta)=\prod_{i} P\left(x_{i} \mid \theta\right)$
- Identically distributed according to Binomial distribution

Sequence D of α_{H} Heads and α_{T} Tails

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

Maximum Likelihood Estimation

Data: Observed set D of α_{H} Heads and α_{T} Tails Hypothesis: Binomial distribution
Learning: finding θ is an optimization problem

- What's the objective function?

MLE: Choose θ to maximize probability of D

$$
\begin{aligned}
& P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}} \\
\hat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

Parameter learning

$\hat{\theta}=\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)$
$=\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$
Set derivative to zero, and solve!

$$
\begin{aligned}
& \frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=\frac{d}{d \theta}\left[\ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\right] \\
& \quad=\frac{d}{d \theta}\left[\alpha_{H} \ln \theta+\alpha_{T} \ln (1-\theta)\right] \\
& \quad=\alpha_{H} \frac{d}{d \theta} \ln \theta+\alpha_{T} \frac{d}{d \theta} \ln (1-\theta) \\
& \quad=\frac{\alpha_{H}}{\theta}-\frac{\alpha_{T}}{1-\theta}=0 \quad \hat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
\end{aligned}
$$

But, how many flips do I need?

$$
\hat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
$$

3 heads and 2 tails.
$\theta=3 / 5$, I can prove it!
What if I flipped 30 heads and 20 tails?
Same answer, I can prove it!
What's better?
Umm... The more the merrier???

A bound

(from Hoeffding's inequality)

For $N=\alpha_{H}+\alpha_{T}$, and $\quad \hat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}$
Let θ^{*} be the true parameter, for any $\varepsilon>0$:

$$
P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

What if I have prior beliefs?

Wait, I know that the thumbtack is "close" to 50-50. What can you do for me now?

Rather than estimating a single θ, we obtain a distribution over possible values of θ

In the beginning

After observations

How to use Prior

Use Bayes rule:

- Or equivalently: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$
- Also, for uniform priors:
\rightarrow reduces to MLE objective

$$
P(\theta) \propto 1 \quad P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)
$$

Beta prior distribution - $P(\theta)$

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

Likelihood function:

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$ Posterior:

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

$P(\theta \mid \mathcal{D}) \propto \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}} \theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}$

$$
=\theta^{\alpha_{H}+\beta_{H}-1}(1-\theta)^{\alpha_{T}+\beta_{t}+1}
$$

$$
=\operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{T}+\beta_{T}\right)
$$

MAP for Beta distribution

$$
P(\theta \mid \mathcal{D})=\frac{\theta^{\beta_{H}+\alpha_{H}-1}(1-\theta)^{\beta_{T}+\alpha_{T}-1}}{B\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)
$$

MAP: use most likely parameter:

$$
\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=\frac{\alpha_{H}+\beta_{H}-1}{\alpha_{H}+\beta_{H}+\alpha_{T}+\beta_{T}-2}
$$

What about continuous variables?

We like Gaussians because

Affine transformation (multiplying by scalar and adding a constant) are Gaussian

- $X \sim N\left(\mu, \sigma^{2}\right)$
- $\mathrm{Y}=\mathrm{aX}+\mathrm{b} \rightarrow \mathrm{Y} \sim N\left(\mathrm{a} \mu+\mathrm{b}, \mathrm{a}^{2} \sigma^{2}\right)$

Sum of Gaussians is Gaussian

- $X \sim N\left(\mu_{x}, \sigma^{2}{ }_{x}\right)$
- $\left.Y \sim N\left(\mu_{Y}, \sigma^{2}\right)^{2}\right)$
- $Z=X+Y \rightarrow Z \sim N\left(\mu_{X}+\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$

Easy to differentiate

Learning a Gaussian

- Collect a bunch of data
-Hopefully, i.i.d. samples
- e.g., exam scores

x_{i}	Exam
$i=$	Score
0	85
1	95
2	100
3	12
\ldots	\ldots
99	89

- Learn parameters
-Mean: μ
-Variance: σ

$$
P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

MLE for Gaussian: $\quad P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$
Prob. of i.i.d. samples $D=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
\begin{aligned}
& P(\mathcal{D} \mid \mu, \sigma)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
& \quad \mu_{M L E}, \sigma_{M L E}=\arg \max _{\mu, \sigma} P(\mathcal{D} \mid \mu, \sigma)
\end{aligned}
$$

- Log-likelihood of data:

$$
\begin{aligned}
\ln P(\mathcal{D} \mid \mu, \sigma) & =\ln \left[\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}\right] \\
& =-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

MLE for mean of a Gaussian

What's MLE for mean?

$$
\begin{aligned}
& \frac{d}{d \mu} \ln P(\mathcal{D} \mid \mu, \sigma)=\frac{d}{d \mu}\left[-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
&=\frac{d}{d \mu}[-N \ln \sigma \sqrt{2 \pi}]-\sum_{i=1}^{N} \frac{d}{d \mu}\left[\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
&=-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)}{\sigma^{2}}=0 \\
&=-\sum_{i=1}^{N} x_{i}+N \mu=0 \\
& \quad \widehat{\mu}_{M L E}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
\end{aligned}
$$

MLE for variance

Again, set derivative to zero:

$$
\begin{aligned}
\frac{d}{d \sigma} \ln P(\mathcal{D} \mid \mu, \sigma) & =\frac{d}{d \sigma}\left[-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =\frac{d}{d \sigma}[-N \ln \sigma \sqrt{2 \pi}]-\sum_{i=1}^{N} \frac{d}{d \sigma}\left[\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =-\frac{N}{\sigma}+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{3}}=0
\end{aligned}
$$

$$
\widehat{\sigma}_{M L E}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
$$

Learning Gaussian parameters

MLE:

$$
\begin{aligned}
\widehat{\mu}_{M L E} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\widehat{\sigma}_{M L E}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

Fitting a Gaussian to Skin samples

$$
\widehat{\mu}_{M L E}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Skin detection results

Figure 25.3. The figure shows a variety of images toget her with the output of the skin detector of Jones and Rehg applied to the image. Pixels marked black are skin pixels, and white are background. Notice that this process is relatively effective, and could certainly be used to focus attention on, say, faces and hands. Figure from "Statistionl color models with application to skin defection," M.J. Jones and J. Rehg, Proc. Computer Vision and Pattern Recognition, 1999 (C) 1999, IEEE

Supervised Learning: find f

Given: Training set $\left\{\left(x_{i}, y_{i}\right) \mid i=1 \ldots n\right\}$
Find: A good approximation to $f: X \rightarrow Y$

What is x ?
What is y ?

Simple Example: Digit Recognition

Input: images / pixel grids
Output: a digit 0-9
Setup:

- Get a large collection of example images, each labeled with a digit
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images

Features: ?

Screw You, I want to use Pixels :D

0 2

Lets take a probabilistic approach!!!

Can we directly estimate the data distribution $\mathrm{P}(\mathrm{X}, \mathrm{Y})$?
How do we represent these?
How many parameters?

- Prior, P(Y):
- Suppose Y is composed of k classes
- Likelihood, $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$:
- Suppose \mathbf{X} is composed of n binary features

Conditional Independence

X is conditionally independent of Y given Z, if the probability distribution for X is independent of the value of Y, given the value of Z

> e.g.,
> $(\forall i, j, k) P(X=i \mid Y=j, Z=k)=P(X=i \mid Z=k)$

Equivalent to:
$P($ Thunder \mid Rain, Lightning $)=P($ Thunder \mid Lightning $)$

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Naïve Bayes

Naïve Bayes assumption:

- Features are independent given class:

$$
\begin{aligned}
P\left(X_{1}, X_{2} \mid Y\right) & =P\left(X_{1} \mid X_{2}, Y\right) P\left(X_{2} \mid Y\right) \\
& =P\left(X_{1} \mid Y\right) P\left(X_{2} \mid Y\right)
\end{aligned}
$$

- More generally:

$$
P\left(X_{1} \ldots X_{n} \mid Y\right)=\prod_{i} P\left(X_{i} \mid Y\right)
$$

The Naïve Bayes Classifier

Given:

- Prior P(Y)
- n conditionally independent features \mathbf{X} given the class Y
- For each X_{i}, we have likelihood $P\left(X_{i} \mid Y\right)$

Decision rule:

$$
\begin{aligned}
y^{*}=h_{N B}(\mathbf{x}) & =\arg \max _{y} P(y) P\left(x_{1}, \ldots, x_{n} \mid y\right) \\
& =\arg \max _{y} P(y) \prod_{i} P\left(x_{i} \mid y\right)
\end{aligned}
$$

A Digit Recognizer

Input: pixel grids

Output: a digit 0-9

Naïve Bayes for Digits (Binary Inputs)

Simple version:

- One feature F_{ij} for each grid position <i,j>
- Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

$$
1 \rightarrow\left\langle F_{0,0}=0 \quad F_{0,1}=0 \quad F_{0,2}=1 \quad F_{0,3}=1 \quad F_{0,4}=0 \ldots F_{15,15}=0\right\rangle
$$

- Here: lots of features, each is binary valued

Naïve Bayes model:

$$
P\left(Y \mid F_{0,0} \ldots F_{15,15}\right) \propto P(Y) \prod_{i, j} P\left(F_{i, j} \mid Y\right)
$$

Are the features independent given class?
What do we need to learn?

Example Distributions

MLE for the parameters of NB

Given dataset

- Count($A=a, B=b)$ number of examples where $A=a$ and $B=b$
MLE for discrete NB, simply:
- Prior:

$$
P(Y=y)=\frac{\operatorname{Count}(Y=y)}{\sum_{y^{\prime}} \operatorname{Count}\left(Y=y^{\prime}\right)}
$$

- Likelihood:

$$
P\left(X_{i}=x \mid Y=y\right)=\frac{\operatorname{Count}\left(X_{i}=x, Y=y\right)}{\sum_{x^{\prime}} \operatorname{Count}\left(X_{i}=x^{\prime}, Y=y\right)}
$$

Violating the NB assumption

Usually, features are not conditionally independent:

$$
P\left(X_{1} \ldots X_{n} \mid Y\right) \neq \prod_{i} P\left(X_{i} \mid Y\right)
$$

- NB often performs well, even when assumption is violated
- [Domingos \& Pazzani '96] discuss some conditions for good performance

Smoothing

$P($ features, $C=2)$

$$
P(C=2)=0.1
$$

$$
P(\mathrm{on} \mid C=2)=0.8
$$

$$
P(\mathrm{on} \mid C=3)=0.8
$$

$$
P(\mathrm{on} \mid C=2)=0.1
$$

$$
P(o f f \mid C=2)=0.1
$$

$$
P(\mathrm{on} \mid C=2)=0.01
$$

$$
P(o n \mid C=3)=0.9
$$

$$
P(\text { off } \mid C=3)=0.7
$$

$$
P(\text { on } \mid C=3)=0.0
$$

2 wins!!

Does this happen in vision?

NB \& Bag of words model

What about real Features? What if we have continuous X_{i} ?

Eg., character recognition: X_{i} is $\mathrm{i}^{\text {th }}$ pixel

Gaussian Naïve Bayes (GNB):

$$
P\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sigma_{i k} \sqrt{2 \pi}} e^{\frac{-\left(x-\mu_{i k}\right)}{2 \sigma_{i k}^{2}}}
$$

Sometimes assume variance is independent of Y (i.e., σ_{i}), or independent of X_{i} (i.e., σ_{k}) or both (i.e., os)

Estimating Parameters

Maximum likelihood estimates:
Mean:

$$
\hat{\mu}_{i k}=\frac{1}{\sum_{j} \delta\left(Y^{j}=y_{k}\right)} \sum_{j} X_{i}^{j} \delta\left(Y^{j}=y_{k}\right)
$$

Variance:

$$
\begin{gathered}
\delta(x)=1 \text { if } x \text { true } \\
\text { else } 0
\end{gathered}
$$

$$
\widehat{\sigma}_{i k}^{2}=\frac{1}{\sum_{j} \delta\left(Y^{j}=y_{k}\right)-1} \sum_{j}\left(X_{i}^{j}-\widehat{\mu}_{i k}\right)^{2} \delta\left(Y^{j}=y_{k}\right)
$$

another probabilistic approach!!!

Naïve Bayes: directly estimate the data distribution $P(X, Y)$!

- challenging due to size of distribution!
- make Naïve Bayes assumption: only need $P\left(X_{i} \mid Y\right)$!

But wait, we classify according to:

- $\max _{\mathrm{Y}} \mathrm{P}(\mathrm{Y} \mid \mathrm{X})$

Why not learn $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ directly?

Discriminative vs. generative

- Generative model
(The artist)

- Discriminative model
(The lousy painter)

- Classification function

Logistic Regression

Logistic function (Sigmoid):

Learn $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ directly!

- Assume a particular functional form
- Sigmoid applied to a linear function of the data:

$$
\begin{aligned}
& P(Y=1 \mid X)=\frac{1}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)} \\
& P(Y=0 \mid X)=\frac{\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)}
\end{aligned}
$$

Logistic Regression: decision boundary

$$
P(Y=1 \mid X)=\frac{1}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)} \quad P(Y=0 \mid X)=\frac{\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right)}
$$

- Prediction: Output the Y with highest $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$
- For binary Y , output $\mathrm{Y}=0$ if

$$
\begin{aligned}
& 1<\frac{P(Y=0 \mid X)}{P(Y=1 \mid X)} \\
& 1<\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} X_{i}\right) \\
& 0<w_{0}+\sum_{i=1}^{n} w_{i} X_{i}
\end{aligned}
$$

A Linear Classifier!

Loss functions / Learning Objectives: Likelihood v. Conditional Likelihood

Generative (Naïve Bayes) Loss function:
Data likelihood

$$
\begin{aligned}
\ln P(\mathcal{D} \mid \mathbf{w}) & =\sum_{j=1}^{N} \ln P\left(\mathbf{x}^{j}, y^{j} \mid \mathbf{w}\right) \\
& =\sum_{j=1}^{N} \ln P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right)+\sum_{j=1}^{N} \ln P\left(\mathbf{x}^{j} \mid \mathbf{w}\right)
\end{aligned}
$$

But, discriminative (logistic regression) loss function:
Conditional Data Likelihood

$$
\ln P\left(\mathcal{D}_{Y} \mid \mathcal{D}_{\mathbf{X}}, \mathbf{w}\right)=\sum_{j=1}^{N} \ln P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right)
$$

- Doesn't waste effort learning $\mathrm{P}(\mathrm{X})$ - focuses on $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ all that matters for classification
- Discriminative models cannot compute $\mathrm{P}\left(\mathbf{x}^{j} \mid \mathbf{w}\right)$!

Conditional Log Likelihood

$$
\begin{array}{ll}
& P(Y=0 \mid \mathbf{X}, \mathbf{w})=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)} \\
l(\mathbf{w}) \equiv \sum_{j} \ln P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right) & P(Y=1 \mid \mathbf{X}, \mathbf{w})=\frac{\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)} \\
&
\end{array}
$$

$l(\mathbf{w})=\sum_{j} y^{j} \ln P\left(y^{j}=1 \mid \mathbf{x}^{j}, \mathbf{w}\right)+\left(1-y^{j}\right) \ln P\left(y^{j}=0 \mid \mathbf{x}^{j}, \mathbf{w}\right)$
remaining steps: substitute definitions, expand logs, and simplify
$=\sum_{j} y^{j} \ln \frac{e^{w_{0}+\sum_{i} w_{i} X_{i}}}{1+e^{w_{0}+\sum_{i} w_{i} X_{i}}}+\left(1-y^{j}\right) \ln \frac{1}{1+e^{w_{0}+\sum_{i} w_{i} X_{i}}}$

Logistic Regression Parameter Estimation: Maximize Conditional Log Likelihood

$$
\begin{aligned}
l(\mathbf{w}) & \equiv \ln \prod_{j} P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right) \\
& =\sum_{j} y^{j}\left(w_{0}+\sum_{i}^{n} w_{i} x_{i}^{j}\right)-\ln \left(1+\exp \left(w_{0}+\sum_{i}^{n} w_{i} x_{i}^{j}\right)\right)
\end{aligned}
$$

Good news: $/(\mathbf{w})$ is concave function of \mathbf{w}
\rightarrow no locally optimal solutions!
Bad news: no closed-form solution to maximize /(w)
Good news: concave functions "easy" to optimize

Optimizing concave function Gradient ascent

Conditional likelihood for Logistic Regression is concave !

Gradient: $\quad \nabla_{\mathbf{w}} l(\mathbf{w})=\left[\frac{\partial l(\mathbf{w})}{\partial w_{0}}, \ldots, \frac{\partial l(\mathbf{w})}{\partial w_{n}}\right]^{\prime}$

Update rule:

$$
\Delta \mathbf{w}=\eta \nabla_{\mathbf{w}} l(\mathbf{w})
$$

$$
w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\eta \frac{\partial l(\mathbf{w})}{\partial w_{i}}
$$

Gradient ascent is simplest of optimization approaches

- e.g., Conjugate gradient ascent much better

Maximize Conditional Log Likelihood: Gradient

 ascent$$
P(Y=1 \mid X, W)=\frac{\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

$$
l(\mathbf{w})=\sum_{j} y^{j}\left(w_{0}+\sum_{i}^{n} w_{i} x_{i}^{j}\right)-\ln \left(1+\exp \left(w_{0}+\sum_{i}^{n} w_{i} x_{i}^{j}\right)\right)
$$

$$
\frac{\partial l(w)}{\partial w_{i}}=\sum_{j}\left[\frac{\partial}{\partial w} y^{j}\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)-\frac{\partial}{\partial w} \ln \left(1+\exp \left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right)\right]
$$

$$
\begin{aligned}
& =\sum_{j}\left[y^{j} x_{i}^{j}-\frac{x_{i}^{j} \exp \left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)}\right] \\
& =\sum_{j} x_{i}^{j}\left[y^{j}-\frac{\exp \left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)}\right]
\end{aligned}
$$

$$
\frac{\partial l(w)}{\partial w_{i}}=\sum_{j} x_{i}^{j}\left(y^{j}-P\left(Y^{j}=1 \mid x^{j}, w\right)\right)
$$

Gradient ascent for LR

Gradient ascent algorithm: (learning rate $\eta>0$) do:

$$
w_{0}^{(t+1)} \leftarrow w_{0}^{(t)}+\eta \sum_{j}\left[y^{j}-\widehat{P}\left(Y^{j}=1 \mid \mathbf{x}^{j}, \mathbf{w}\right)\right]
$$

For $i=1 . . . n:(i t e r a t e ~ o v e r ~ w e i g h t s) ~$
until "change" < ε

$$
w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\eta \sum_{j} x_{i}^{j}\left[y^{j}-\widehat{P}\left(Y^{j}=1 \mid \mathbf{x}^{j}, \mathbf{w}\right)\right]
$$

Loop over training examples!

Large parameters...

$$
\frac{1}{1+e^{-a x}}
$$

Maximum likelihood solution: prefers higher weights

- higher likelihood of (properly classified) examples close to decision boundary
- larger influence of corresponding features on decision
- can cause overfitting!!!

Regularization: penalize high weights

- again, more on this later in the quarter

How about MAP?

$$
p(\mathbf{w} \mid Y, \mathbf{X}) \propto P(Y \mid \mathbf{X}, \mathbf{w}) p(\mathbf{w})
$$

One common approach is to define priors on w

- Normal distribution, zero mean, identity covariance
Often called Regularization

$$
p(\mathrm{w})=\prod_{i} \frac{1}{\kappa \sqrt{2 \pi}} e^{\frac{-w_{i}^{2}}{2 \kappa^{2}}}
$$

- Helps avoid very large weights and overfitting

MAP estimate:

$$
\mathbf{w}^{*}=\arg \max _{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right)\right]
$$

$\mathrm{M}(\mathrm{C}) \mathrm{AP}$ as Regularization

$$
\mathbf{w}^{*}=\arg \max _{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right)\right] \quad p(\mathbf{w})=\prod_{i} \frac{1}{\kappa \sqrt{2 \pi}} e^{\frac{-w_{i}^{2}}{2 \kappa^{2}}}
$$

Add $\log p(w)$ to objective:

$$
\ln p(w) \propto-\frac{\lambda}{2} \sum_{i} w_{i}^{2} \quad \frac{\partial \ln p(w)}{\partial w_{i}}=-\lambda w_{i}
$$

- Quadratic penalty: drives weights towards zero
- Adds a negative linear term to the gradients

MLE vs. MAP

Maximum conditional likelihood estimate

$$
\begin{aligned}
& \mathbf{w}^{*}=\arg \max _{\mathbf{w}} \ln \left[\prod_{j=1}^{N} P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right)\right] \\
& w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\eta \sum_{j} x_{i}^{j}\left[y^{j}-\widehat{P}\left(Y^{j}=1 \mid \mathbf{x}^{j}, \mathbf{w}\right)\right]
\end{aligned}
$$

Maximum conditional a posteriori estimate

$$
\begin{aligned}
& \mathbf{w}^{*}=\arg \max _{\mathbf{w}} \ln \left[p(\mathbf{w}) \prod_{j=1}^{N} P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right)\right] \\
& w_{i}^{(t+1)} \leftarrow w_{i}^{(t)}+\eta\left\{-\lambda w_{i}^{(t)}+\sum_{j} x_{i}^{j}\left[y^{j}-\widehat{P}\left(Y^{j}=1 \mid \mathbf{x}^{j}, \mathbf{w}\right)\right]\right\}
\end{aligned}
$$

Logistic regression v. Naïve Bayes

Consider learning $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, where

- X is a vector of real-valued features, $<X_{1} \ldots X_{n}>$
- Y is boolean

Could use a Gaussian Naïve Bayes classifier

- assume all X_{i} are conditionally independent given Y
- model $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}=\mathrm{y}_{\mathrm{k}}\right)$ as Gaussian $\mathrm{N}\left(\mu_{\mathrm{i} k}, \sigma_{\mathrm{i}}\right)$
- model $P(Y)$ as Bernoulli $(\theta, 1-\theta)$

What does that imply about the form of $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$?

$$
P\left(Y=1 \mid X=<X_{1}, \ldots X_{n}>\right)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}
$$

Derive form for $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ for continuous X_{i}

$$
P(Y=1 \mid X)=\frac{P(Y=1) P(X \mid Y=1)}{P(Y=1) P(X \mid Y=1)+P(Y=0) P(X \mid Y=0)}
$$

$$
\begin{aligned}
& =\frac{1}{1+\frac{P(Y=0) P(X \mid Y=0)}{P(Y=1) P(X \mid Y=1)}} \\
& =\frac{1}{1+\exp \left(\ln \frac{P(Y=0) P(X \mid Y=0)}{P(Y=1) P(X \mid Y=1)}\right)}
\end{aligned}
$$

up to now, all arithmetic
$=\frac{1}{1+\exp \left(\left(\ln \frac{1-\theta}{\theta}\right)+\sum_{i} \ln \frac{P\left(X_{i} \mid Y=0\right)}{P\left(X_{i} \mid Y=1\right)}\right)}$
Can we solve for w_{i} ?
Looks like a setting for w_{0} ?

- Yes, but only in Gaussian case

Ratio of class-conditional probabilities

$$
\begin{aligned}
& \ln \frac{P\left(X_{i} \mid Y=0\right)}{P\left(X_{i} \mid Y=1\right)} \\
= & \ln \left[\begin{array}{ll}
\left.\frac{\frac{1}{\sigma_{i} \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu_{i 0}\right)^{2}}{2 \sigma_{i}^{2}}}}{\frac{1}{\sigma_{i} \sqrt{2 \pi}} e^{-\frac{\left(x_{i}-\mu_{i 1}\right)^{2}}{2 \sigma_{i}^{2}}}}\right] & P\left(X_{i}=x \mid Y=y_{k}\right)=\frac{1}{\sigma_{i} \sqrt{2 \pi}} e^{\frac{-\left(x-\mu_{i k}\right)^{2}}{2 \sigma_{i}^{2}}} \\
= & -\frac{\left(x_{i}-\mu_{i 0}\right)^{2}}{2 \sigma_{i}^{2}}+\frac{\left(x_{i}-\mu_{i 1}\right)^{2}}{2 \sigma_{i}^{2}} \\
\cdots & \text { Linear function! } \\
= & \begin{array}{l}
\text { Coefficients } \\
\text { expressed with } \\
\text { original Gaussian }
\end{array} \\
\sigma_{i}^{2} & \text { parameters! }
\end{array}\right. \\
2 \sigma_{i}+\frac{\mu_{i 0}^{2}+\mu_{i 1}^{2}}{2 \sigma_{i}^{2}} &
\end{aligned}
$$

Derive form for $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ for continuous X_{i}

$$
\begin{aligned}
& P(Y=1 \mid X)=\frac{P(Y=1) P(X \mid Y=1)}{P(Y=1) P(X \mid Y=1)+P(Y=0) P(X \mid Y=0)} \\
&=\frac{1}{1+\exp \left(\left(\ln \frac{1-\theta}{\theta}\right)+\sum_{i} \ln \frac{P\left(X_{i} \mid Y=0\right)}{P\left(X_{i} \mid Y=1\right)}\right)} \\
& P(Y=1 \mid X)=\frac{\sum_{i}\left(\frac{\mu_{i 0}-\mu_{i 1}}{\sigma_{i}^{2}} X_{i}+\frac{\mu_{i 1}^{2}-\mu_{i 0}^{2}}{2 \sigma_{i}^{2}}\right)}{1+\exp \left(w o+\sum_{i=1}^{n} w_{i} X_{i}\right)} \\
& w_{0}=\ln \frac{1-\theta}{\theta}+\frac{\mu_{i 0}^{2}+\mu_{i 1}^{2}}{2 \sigma_{i}^{2}} \quad w_{i}=\frac{\mu_{i 0}+\mu_{i 1}}{\sigma_{i}^{2}}
\end{aligned}
$$

Gaussian Naïve Bayes vs. Logistic Regression

Set of Gaussian Naïve Bayes parameters
(feature variance
independent of class label)

Set of Logistic
 Regression parameters

Representation equivalence

- But only in a special case!!! (GNB with class-independent variances)
But what's the difference???
LR makes no assumptions about $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$ in learning!!!
Loss function!!!
- Optimize different functions ! Obtain different solutions

Naïve Bayes vs. Logistic Regression

Consider Y boolean, X_{i} continuous, $X=<X_{1} \ldots X_{n}>$

Number of parameters:
Naïve Bayes: $4 \mathrm{n}+1$
Logistic Regression: n+1

Estimation method:
Naïve Bayes parameter estimates are uncoupled
Logistic Regression parameter estimates are coupled

Naïve Bayes vs. Logistic Regression

[Ng \& Jordan, 2002]
Generative vs. Discriminative classifiers
Asymptotic comparison
(\# training examples \rightarrow infinity)

- when model correct
- GNB (with class independent variances) and LR produce identical classifiers
- when model incorrect
- LR is less biased - does not assume conditional independence
» therefore LR expected to outperform GNB

Naïve Bayes vs. Logistic Regression

[Ng \& Jordan, 2002]
Generative vs. Discriminative classifiers Non-asymptotic analysis

- convergence rate of parameter estimates, ($\mathrm{n}=$ \# of attributes in X)
- Size of training data to get close to infinite data solution
- Naïve Bayes needs O(log n) samples
- Logistic Regression needs O(n) samples
- GNB converges more quickly to its (perhaps less helpful) asymptotic estimates

What you should know about Logistic Regression (LR)

Gaussian Naïve Bayes with class-independent variances representationally equivalent to LR

- Solution differs because of objective (loss) function

In general, NB and LR make different assumptions

- NB: Features independent given class ! assumption on $\mathrm{P}(\mathbf{X} \mid \mathrm{Y})$
- LR: Functional form of $\mathrm{P}(\mathrm{Y} \mid \mathbf{X})$, no assumption on $\mathrm{P}(\mathbf{X} \mid \mathrm{Y})$

LR is a linear classifier

- decision rule is a hyperplane

LR optimized by conditional likelihood

- no closed-form solution
- concave ! global optimum with gradient ascent
- Maximum conditional a posteriori corresponds to regularization

Convergence rates

- GNB (usually) needs less data
- LR (usually) gets to better solutions in the limit

Decision Boundary

Voting (Ensemble Methods)

Instead of learning a single classifier, learn many weak classifiers that are good at different parts of the data
Output class: (Weighted) vote of each classifier

- Classifiers that are most "sure" will vote with more conviction
- Classifiers will be most "sure" about a particular part of the space
- On average, do better than single classifier!

But how???

- force classifiers to learn about different parts of the input space? different subsets of the data?
- weigh the votes of different classifiers?

BAGGing $=\underline{\text { Bootstrap AGGregation }}$

(Breiman, 1996)

- for $\mathrm{i}=1,2, \ldots, \mathrm{~K}$:
$-T_{i} \leftarrow$ randomly select M training instances with replacement
$-\mathrm{h}_{\mathrm{i}} \leftarrow \operatorname{learn}\left(\mathrm{T}_{\mathrm{i}}\right) \quad$ [ID3, $N B, k N N$, neural net, ...]
- Now combine the T_{i} together with uniform voting ($w_{i}=1 / K$ for all i)

Bagging Example

Decision Boundary

100 bagged trees

shades of blue/red indicate strength of vote for particular classification

Fighting the bias-variance tradeoff

Simple (a.k.a. weak) learners are good

- e.g., naïve Bayes, logistic regression, decision stumps (or shallow decision trees)
- Low variance, don't usually overfit

Simple (a.k.a. weak) learners are bad

- High bias, can't solve hard learning problems

Can we make weak learners always good???

- No!!!
- But often yes...

Boosting

Idea: given a weak learner, run it multiple times on
(reweighted) training data, then let learned classifiers vote

On each iteration t :

- weight each training example by how incorrectly it was classified
- Learn a hypothesis - h_{t}
- A strength for this hypothesis $-\alpha_{t}$

Final classifier:

$$
h(x)=\operatorname{sign}\left(\sum_{i} \alpha_{i} h_{i}(x)\right)
$$

Practically useful

Theoretically interesting

```
                            Iools Help
* \ 人 (x) http://www1.cs.columbie.edu/freund/daboost/
```


First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test set

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

```
                            Iools Help
* \ 人 (x) h http://www1.cs.columbi.edu/freund/daboost/
```


time $=3$

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

Applet adaboost started

First, generate a data-set by clicking on the left and right buttons in the main window of the applet. Then, press "split" to split the data into training and test sets

Learning from weighted data

Consider a weighted dataset

- $\mathrm{D}(\mathrm{i})$ - weight of i th training example ($\left.\mathbf{x}^{i}, \mathrm{y}^{i}\right)$
- Interpretations:
- ith training example counts as if it occurred D (i) times
- If I were to "resample" data, I would get more samples of "heavier" data points
Now, always do weighted calculations:
- e.g., MLE for Naïve Bayes, redefine $\operatorname{Count}(Y=y)$ to be weighted count:

$$
\operatorname{Count}(Y=y)=\sum_{j=1}^{n} D(j) \delta\left(Y^{j}=y\right)
$$

- setting $D(j)=1$ (or any constant value!), for all j, will recreates unweighted case

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$ where $x_{i} \in X, y_{i} \in Y=\{-1,+1\}$
Initialize $D_{1}(i)=1 / \mathrm{m}$.
For $t=1, \ldots, T$:
How? Many possibilities. Will see one shortly!

- Train base learner using distribution D_{t}.
- Get base classifier $h_{t} \cdot X \rightarrow \mathbb{R}$.
- Choose $\alpha_{t} \in \mathbb{R}$.
- Update:

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is a normalization factor

$$
Z_{t}=\sum_{i=1}^{m} D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right) . \quad \begin{aligned}
& \text { "base" or "weak" classifier } \\
& \text { outputs. }
\end{aligned}
$$

Figure 1: The boosting algorithm AdaBoost.

Given: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)$

$$
\begin{array}{r}
\epsilon_{t}=P_{i \sim D_{t}(i)}\left[h_{t}\left(\mathbf{x}^{i}\right) \neq y^{i}\right] \\
\epsilon_{t}=\sum_{i=1}^{m} D_{t}(i) \delta\left(h_{t}\left(x_{i}\right) \neq y_{i}\right)
\end{array}
$$

Initialize $D_{1}(i)=1 / m$.
For $t=1, \ldots, T$:

- Train base learner using distribution D_{t}.
- Get base classifier $h_{t}: X \rightarrow \mathbb{R}$.
- Choose $\alpha_{t} \in \mathbb{R}$.

$$
\alpha_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)
$$

- Update:

$$
D_{t+1}(i)=\frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where Z_{t} is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final classifier:

$$
H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right) .
$$

Figure 1: The boosting algorithm AdaBoost.

What α_{t} to choose for hypothesis h_{t} ?

[Schapire, 1989]
Idea: choose α_{t} to minimize a bound on training error!

$$
\frac{1}{m} \sum_{i=1}^{m} \delta\left(H\left(x_{i}\right) \neq y_{i}\right) \leq \frac{1}{m} \sum_{i=1}^{m} \exp \left(-y_{i} f\left(x_{i}\right)\right)
$$

Where $f(x)=\sum_{t} \alpha_{t} h_{t}(x) ; H(x)=\operatorname{sign}(f(x))$

What α_{t} to choose for hypothesis h_{t} ?

[Schapire, 1989]
Idea: choose α_{t} to minimize a bound on training error!

$$
\begin{aligned}
& \frac{1}{m} \sum_{i=1}^{m} \delta\left(H\left(x_{i}\right) \neq y_{i}\right) \leq \frac{1}{m} \sum_{i} \exp \left(-y_{i}\right. \\
& \text { here } \\
& f(x)=\sum_{t} \alpha_{t} h_{t}(x) ; H(x)=\operatorname{sign}(f(x))
\end{aligned}
$$

And

$$
Z_{t}=\sum_{i=1}^{m} D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)
$$

This equality isn't obvious! Can be shown with algebra (telescoping sums)!

If we minimize $\prod_{t} Z_{t}$, we minimize our training error!!!
We can tighten this bound greedily, by choosing α_{t} and h_{t} on each iteration to minimize Z_{t}.
h_{t} is estimated as a black box, but can we solve for α_{t} ?

Summary: choose α_{t} to minimize error bound
[Schapire, 1989]
We can squeeze this bound by choosing α_{t} on each iteration to minimize Z_{t}.

$$
\begin{aligned}
& Z_{t}=\sum_{i=1}^{m} D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right) \\
& \epsilon_{t}=\sum_{i=1}^{m} D_{t}(i) \delta\left(h_{t}\left(x_{i}\right) \neq y_{i}\right)
\end{aligned}
$$

For boolean Y : differentiate, set equal to 0 , there is a closed form solution! [Freund \& Schapire '97]:

$$
\alpha_{t}=\frac{1}{2} \ln \left(\frac{1-\epsilon_{t}}{\epsilon_{t}}\right)
$$

Strong, weak classifiers

If each classifier is (at least slightly) better than random: $\varepsilon_{t}<0.5$
Another bound on error:

$$
\frac{1}{m} \sum_{i=1}^{m} \delta\left(H\left(x_{i}\right) \neq y_{i}\right) \leq \prod_{t} Z_{t} \leq \exp \left(-2 \sum_{t=1}^{T}\left(1 / 2-\epsilon_{t}\right)^{2}\right)
$$

What does this imply about the training error?

- Will get there exponentially fast!

Is it hard to achieve better than random training error?

Boosting results - Digit recognition

[Schapire, 1989]

Boosting:

- Seems to be robust to overfitting
- Test error can decrease even after training error is zero!!!

Boosting generalization error bound

[Freund \& Schapire, 1996]
error $_{\text {true }}(H) \leq$ error $_{\text {train }}(H)+\tilde{\mathcal{O}}$
Constants:
T : number of boosting rounds

- Higher $\mathrm{T} \rightarrow$ Looser bound, what does this imply?
d: VC dimension of weak learner, measures complexity of classifier
- Higher $d \rightarrow$ bigger hypothesis space \rightarrow looser bound
m : number of training examples
- more data \rightarrow tighter bound

Boosting generalization error bound

[Freund \& Schapire, 1996]

Constants:

- Theory does not match practice:
- Robust to overfitting
- Test set error decreases even after training error is zero
- Need better analysis tools
- we'll come back to this later in the quarter
- more data \rightarrow tignter bound

Logistic Regression as Minimizing Loss

Logistic regression assumes:

$$
P(Y=1 \mid X)=\frac{1}{1+\exp (f(x))} \quad f(x)=w_{0}+\sum_{i} w_{i} h_{i}(x)
$$

And tries to maximize data likelihood, for $Y=\{-1,+1\}$:

$$
\begin{aligned}
P\left(y_{i} \mid \mathbf{x}_{i}\right)=\frac{1}{1+e^{-y_{i} f\left(\mathbf{x}_{i}\right)}} \ln P\left(\mathcal{D}_{Y} \mid \mathcal{D}_{\mathbf{X}}, \mathbf{w}\right) & =\sum_{j=1}^{N} \ln P\left(y^{j} \mid \mathbf{x}^{j}, \mathbf{w}\right) \\
= & -\sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i} f\left(x_{i}\right)\right)\right)
\end{aligned}
$$

Equivalent to minimizing log loss:

$$
\sum_{i=1}^{m} \ln \left(1+\exp \left(-y_{i} f\left(x_{i}\right)\right)\right)
$$

Boosting and Logistic Regression

Logistic regression equivalent to minimizing log loss:

Both smooth approximations of $0 / 1$ loss!

