Stereo II

CSE 576

Ali Farhadi

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point ($x^{\prime}{ }_{c}, y^{\prime}{ }_{c}$), pixel size (s_{x}, s_{y})
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

$$
\mathbf{x}=\left[\begin{array}{c}
w x \\
w y \\
w
\end{array}\right]=\left[\begin{array}{llll}
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]=\Pi \mathbf{X} \quad y^{\prime 4} \xrightarrow{\substack{\left.x_{c}^{\prime}, y_{c}^{\prime}\right)}}
$$

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$
\boldsymbol{\Psi}=\underset{\text { intrinsics }}{\left[\begin{array}{ccc}
-f s_{x} & 0 & x_{c}^{\prime} \\
0 & -f s_{y} & y_{c}^{\prime} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]} \underset{\text { projection }}{\left[\begin{array}{cc}
\mathbf{R}_{3 \times 3} & \mathbf{0}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]} \underset{\text { rotation }}{\left[\begin{array}{cc}
\mathbf{I}_{3 \times 3} & \mathbf{T}_{3 \times 1} \\
\mathbf{0}_{1 \times 3} & 1
\end{array}\right]}
$$

- The definitions of these parameters are not completely standardized
- especially intrinsics-varies from one book to another

Extrinsics

How do we get the camera to "canonical form"?

- (Center of projection at the origin, x-axis points right, y-axis points up, z axis points backwards)

Step 1: Translate by -c

Extrinsics

How do we get the camera to "canonical form"?

- (Center of projection at the origin, x-axis points right, y-axis points up, z axis points backwards)

Step 1: Translate by -c

How do we represent translation as a matrix multiplication?

Extrinsics

How do we get the camera to "canonical form"?

- (Center of projection at the origin, x-axis points right, y-axis points up, z axis points backwards)

Extrinsics

How do we get the camera to "canonical form"?

- (Center of projection at the origin, x-axis points right, y-axis points up, z axis points backwards)

Step 1: Translate by -c
Step 2: Rotate by R
$\mathbf{R}=\left[\begin{array}{c}\mathbf{u}^{T} \\ \mathbf{v}^{T} \\ \mathbf{w}^{T}\end{array}\right]$

Perspective projection

α : aspect ratio (1 unless pixels are not square)
S : skew (0 unless pixels are shaped like rhombi/parallelograms)
$\left(c_{x}, c_{y}\right)$: principal point ($(0,0)$ unless optical axis doesn't intersect projection plane at origin $)$

Projection matrix

$\boldsymbol{\Pi}=\underset{\text { intrinsics }}{\mathbf{K}} \underset{\underbrace{}}{\substack{1 \\ 1 \\ 0}} \begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array} 0$

Projection matrix

Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as [I|0] and [R|t]

Epipolar constraint: Calibrated case

The vectors $R x, t$, and \boldsymbol{x}, are coplanar

Epipolar constraint: Calibrated case

Essential Matrix
(Longuet-Higgins, 1981)

The vectors $R x, t$, and x^{\prime} are coplanar

Epipolar constraint: Calibrated case

- $\boldsymbol{E x}$ is the epipolar line associated with $\boldsymbol{x}\left(I^{\prime}=\boldsymbol{E} \boldsymbol{x}\right)$
- $\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{I}=\boldsymbol{E}^{\top} \boldsymbol{x}^{\prime}\right)$
- $E \mathbf{e}=0$ and $E^{\top} \mathbf{e}^{\prime}=0$
- E is singular (rank two)
- E has five degrees of freedom

Epipolar constraint: Uncalibrated case

- The calibration matrices \boldsymbol{K} and \boldsymbol{K}^{\prime} of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$
\hat{\boldsymbol{x}}^{\prime T} \boldsymbol{E} \hat{\boldsymbol{x}}=0 \quad \hat{\boldsymbol{x}}=\boldsymbol{K}^{-1} \boldsymbol{x}, \quad \hat{\boldsymbol{x}}^{\prime}=\boldsymbol{K}^{\prime-1} \hat{\boldsymbol{x}}^{\prime}
$$

Epipolar constraint: Uncalibrated case

Epipolar constraint: Uncalibrated case

- $\boldsymbol{F} \boldsymbol{x}$ is the epipolar line associated with $\boldsymbol{x}\left(\boldsymbol{l}^{\prime}=\boldsymbol{F} \boldsymbol{x}\right)$
- $\boldsymbol{F}^{T} \boldsymbol{x}^{\prime}$ is the epipolar line associated with $\boldsymbol{x}^{\prime}\left(\boldsymbol{l}^{\prime}=\boldsymbol{F}^{T} \boldsymbol{x}^{\prime}\right)$
- $\boldsymbol{F} \boldsymbol{e}=0$ and $\boldsymbol{F}^{T} \boldsymbol{e}^{\prime}=0$
- \boldsymbol{F} is singular (rank two)
- \boldsymbol{F} has seven degrees of freedom

The eight-point algorithm

$$
\begin{aligned}
& \boldsymbol{x}=(u, v, 1)^{T}, \quad \boldsymbol{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right) \\
& {\left[\begin{array}{lll}
u^{\prime} & v^{\prime} & 1
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=0} \\
& \square\left[\begin{array}{llllllll}
u^{\prime} u & u^{\prime} v & u^{\prime} & v^{\prime} u & v^{\prime} v & v^{\prime} & u & v
\end{array}\right] \\
& {\left[\begin{array}{l}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right]=0} \\
& \text { Minimize: } \\
& \text { Smallest } \\
& \text { eigenvalue of } \\
& \mathrm{A}^{\mathrm{T}} \mathrm{~A} \\
& \sum_{i=1}^{N}\left(\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2} \\
& \text { under the constraint } \\
& \|\boldsymbol{F}\|^{2}=1
\end{aligned}
$$

The eight-point algorithm

- Meaning of error $\sum_{i=1}^{N}\left(\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i}\right)^{2}$:
sum of squared algebraic distances between points $\boldsymbol{x}_{i}^{\prime}$ and epipolar lines $\boldsymbol{F} \boldsymbol{x}_{\boldsymbol{i}}$ (or points \boldsymbol{x}_{i} and epipolar lines $\boldsymbol{F}^{\top} \boldsymbol{X}_{\boldsymbol{i}}^{\prime}$)
- Nonlinear approach: minimize sum of squared geometric distances

$$
\sum_{i=1}^{N}\left[\mathrm{~d}^{2}\left(\boldsymbol{x}_{i}^{\prime}, \boldsymbol{F} \boldsymbol{x}_{i}\right)+\mathrm{d}^{2}\left(\boldsymbol{x}_{i}, \boldsymbol{F}^{\boldsymbol{T}} \boldsymbol{x}_{i}^{\prime}\right)\right]
$$

Problem with eight-point algorithm

Problem with eight-point algorithm

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if \boldsymbol{T} and \boldsymbol{T}^{\prime} are the normalizing transformations in the two images, then the fundamental matrix in original coordinates is $\boldsymbol{T}^{\top} \boldsymbol{F} \boldsymbol{T}$

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

Moving on to stereo...

Fuse a calibrated binocular stereo pair to produce a depth image

Dense depth map

Depth from disparity

$$
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
$$

Disparity is inversely proportional to depth.

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Search the scanline and pick the best match x '
- Compute disparity x-x' and set depth $(x)=f B /\left(x-x^{\prime}\right)$

Basic stereo matching algorithm

- For each pixel in the first image
- Find corresponding epipolar line in the right image
- Search along epipolar line and pick the best match
- Triangulate the matches to get depth information
- Simplest case: epipolar lines are scanlines
- When does this happen?

Simplest Case: Parallel images

Epipolar constraint:

$$
\begin{gathered}
x^{T} E x^{\prime}=0, \quad E=t \times R \\
R=I \quad t=(T, 0,0)
\end{gathered}
$$

$$
E=t \times R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

$\left(\begin{array}{lll}u & v & 1\end{array}\right)\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0\end{array}\right]\left(\begin{array}{l}u^{\prime} \\ v^{\prime} \\ 1\end{array}\right)=0 \quad\left(\begin{array}{lll}u & v & 1\end{array}\right)\left(\begin{array}{c}0 \\ -T \\ T v^{\prime}\end{array}\right)=0 \quad T v=T v^{\prime}$
The y-coordinates of corresponding points are the same

Stereo image rectification

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation
- Two homographies (3×3 transform), one for each input image reprojection
> C. Loop and Z. Zhang.
Computing Rectifying
Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Example

Rectified

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

Correspondence search

Effect of window size

$\mathrm{W}=3$

$\mathrm{W}=20$

- Smaller window
+ More detail
- More noise
- Larger window
+ Smoother disparity maps
- Less detail
- Fails near boundaries

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search

Data

Window-based matching
Ground truth

How can we improve window-based matching?

So far, matches are independent for each point

What constraints or priors can we add?

Stereo constraints/priors

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image

Stereo constraints/priors

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Stereo constraints/priors

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Ordering constraint doesn’t hold

Priors and constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views
- Smoothness
- We expect disparity values to change slowly (for the most part)

Stereo as energy minimization

What defines a good stereo correspondence?

1. Match quality

- Want each pixel to find a good match in the other image

2. Smoothness

- If two pixels are adjacent, they should (usually) move about the same amount

Stereo as energy minimization

Better objective function

Stereo as energy minimization

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

match cost: $\quad E_{d}(d)=\sum C(x, y, d(x, y))$

$$
(x, y) \in I
$$

$C(x, y, d(x, y))=$ SSD distance between windows

\mathcal{E} : set of neighboring pixels

$$
(p, q) \in \mathcal{E}
$$

4-connected 8-connected neighborhoocheighborhood

Smoothness cost

$$
E_{s}(d)=\sum_{(p, q) \in \mathcal{E}} V\left(d_{p}, d_{q}\right)
$$

Dynamic programming

$$
E(d)=E_{d}(d)+\lambda E_{s}(d)
$$

Can minimize this independently per scanline using dynamic programming (DP)
$D(x, y, d)$: minimum cost of solution such that $d(x, y)=d$

$$
D(x, y, d)=C(x, y, d)+\min _{d^{\prime}}\left\{D\left(x-1, y, d^{\prime}\right)+\lambda\left|d-d^{\prime}\right|\right\}
$$

Energy minimization via graph cuts

Energy minimization via graph cuts

- Graph Cut
- Delete enough edges so that
- each pixel is connected to exactly one label node
- Cost of a cut: sum of deleted edge weights
- Finding min cost cut equivalent to finding global minimum of energy function

Stereo as energy minimization

$I(x, y)$

$J(x, y)$

$C(x, y, d)$; the disparity space image (DSI)

Stereo as energy minimization

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

$$
d(x, y)=\underset{d^{\prime}}{\arg \min } C\left(x, y, d^{\prime}\right)
$$

Matching windows

Similarity Measure

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

Formula

$$
\begin{gathered}
\sum_{(i, j) \in W}\left|I_{1}(i, j)-I_{2}(x+i, y+j)\right| \\
\sum_{(i, j) \in W}\left(I_{1}(i, j)-I_{2}(x+i, y+j)\right)^{2} \\
\sum_{(i, j) \in W}\left|I_{1}(i, j)-\bar{I}_{1}(i, j)-I_{2}(x+i, y+j)+\bar{I}_{2}(x+i, y+j)\right| \\
\sum_{(i, j) \in W}\left|I_{1}(i, j)-\frac{\bar{I}_{1}(i, j)}{I_{2}(x+i, y+j)} I_{2}(x+i, y+j)\right| \\
\frac{\sum_{(i, j) \in W} I_{1}(i, j) \cdot I_{2}(x+i, y+j)}{\sqrt[2]{\sum_{(i, j) \in W}^{2} I_{1}^{2}(i, j) \cdot \sum_{(i, j) \in W} I_{2}^{2}(x+i, y+j)}} \\
\frac{\mathrm{NCC}}{2} \mathrm{Ground} \text { truth }
\end{gathered}
$$

SAD

SSD

Before \& After

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 For the latest and greatest: http://www.middlebury.edu/stereo/

Real-time stereo

Nomad robot searches for meteorites in Antartica http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

Used for robot navigation (and other tasks)

- Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Why does stereo fail?

Fronto-Parallel Surfaces: Depth is constant within the region of local support

Why does stereo fail?

Monotonic Ordering - Points along an epipolar scanline appear in the same order in both stereo images Occlusion - All points are visible in each image

Why does stereo fail?

Image Brightness Constancy: Assuming Lambertian surfaces, the brightness of corresponding points in stereo images are the same.

Why does stereo fail?

Match Uniqueness: For every point in one stereo image, there is at most one corresponding point in the other image.

Stereo reconstruction pipeline

Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Choosing the stereo baseline

Large Baseline

Small Baseline

What's the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

Multi-view stereo?

Beyond two-view stereo

The third view can be used for verification

Using more than two images

Multi-View Stereo for Community Photo Collections M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz
 Proceedings of ICCV 2007,

