Stereo II

CSE 576 Ali Farhadi

Several slides from Larry Zitnick and Steve Seitz

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x' _c, y' _c), pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

jidentity matrix

Y

$$\mathbf{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{f}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$

intrinsics projection rotation translation

- The definitions of these parameters are not completely standardized
- especially intrinsics—varies from one book to another

Perspective projection

 \mathcal{M} : aspect ratio (1 unless pixels are not square)

S : skew (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x, c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Projection matrix

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get *normalized* image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera. Then the projection matrices of the two cameras can be written as [I | 0] and [R | t]

The vectors Rx, t, and x' are coplanar

The vectors Rx, t, and x' are coplanar

- **E x** is the epipolar line associated with **x** (**I**' = **E x**)
- $E^T x'$ is the epipolar line associated with $x' (I = E^T x')$
- E e = 0 and $E^{T}e' = 0$
- *E* is singular (rank two)
- *E* has five degrees of freedom

- The calibration matrices *K* and *K*' of the two cameras are unknown
- We can write the epipolar constraint in terms of *unknown* normalized coordinates:

$$\hat{x}'^{T} E \hat{x} = 0$$
 $\hat{x} = K^{-1} x, \quad \hat{x}' = K'^{-1} \hat{x}'$

- Fx is the epipolar line associated with x(l' = Fx)
- $F^T x'$ is the epipolar line associated with $x' (l' = F^T x')$
- F e = 0 and $F^T e' = 0$
- *F* is singular (rank two)
- *F* has *seven* degrees of freedom

The eight-point algorithm

The eight-point algorithm

Meaning of error

$$\sum_{i=1}^{N} (\boldsymbol{x}_{i}^{\prime T} \boldsymbol{F} \boldsymbol{x}_{i})^{2}:$$

sum of squared *algebraic* distances between points \mathbf{x}'_i and epipolar lines $\mathbf{F}\mathbf{x}_i$ (or points \mathbf{x}_i and epipolar lines $\mathbf{F}^T\mathbf{x}'_i$)

• Nonlinear approach: minimize sum of squared *geometric* distances

$$\sum_{i=1}^{N} \left[d^{2}(\boldsymbol{x}_{i}', \boldsymbol{F}\boldsymbol{x}_{i}) + d^{2}(\boldsymbol{x}_{i}, \boldsymbol{F}^{T}\boldsymbol{x}_{i}') \right]$$

Problem with eight-point algorithm

$$\begin{bmatrix} u'u & u'v & u' & v'u & v'v & v' & u & v \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \end{bmatrix} = 0$$

Problem with eight-point algorithm

250906.36	183269.57	921.81	200931.10	146766.13	738.21	272.19	198.81
2692.28	131633.03	176.27	6196.73	302975.59	405.71	15.27	746.79
416374.23	871684.30	935.47	408110.89	854384.92	916.90	445.10	931.81
191183.60	171759.40	410.27	416435.62	374125.90	893.65	465.99	418.65
48988.86	30401.76	57.89	298604.57	185309.58	352.87	846.22	525.15
164786.04	546559.67	813.17	1998.37	6628.15	9.86	202.65	672.14
116407.01	2727.75	138.89	169941.27	3982.21	202.77	838.12	19.64
135384.58	75411.13	198.72	411350.03	229127.78	603.79	681.28	379.48

Poor numerical conditioning Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute *F* from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if *T* and *T*' are the normalizing transformations in the two images, then the fundamental matrix in original coordinates is *T*'^T*FT*

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

Moving on to stereo...

Fuse a calibrated binocular stereo pair to produce a depth image

Dense depth map

Many of these slides adapted from Steve Seitz and Lana Lazebnik

Depth from disparity

Disparity is inversely proportional to depth.

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
 - Find corresponding epipolar scanline in the right image
 - Search the scanline and pick the best match x'
 - Compute disparity x-x' and set depth(x) = fB/(x-x')

Basic stereo matching algorithm

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Search along epipolar line and pick the best match
 - Triangulate the matches to get depth information
- Simplest case: epipolar lines are scanlines
 - When does this happen?

Simplest Case: Parallel images

The y-coordinates of corresponding points are the same

Stereo image rectification

- Reproject image planes onto a common plane parallel to the line between camera centers
- Pixel motion is horizontal after this transformation
- Two homographies (3x3 transform), one for each input image reprojection
- C. Loop and Z. Zhang. <u>Computing Rectifying</u> <u>Homographies for Stereo Vision</u>. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Example

Correspondence search

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search

Correspondence search

Effect of window size

$$W = 3$$

W = 20

- Smaller window
 - + More detail
 - More noise
- Larger window
 - + Smoother disparity maps
 - Less detail
 - Fails near boundaries

Failures of correspondence search

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search

Window-based matching

Ground truth

So far, matches are independent for each point

What constraints or priors can we add?

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views

Stereo constraints/priors

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views

Ordering constraint doesn't hold

Priors and constraints

- Uniqueness
 - For any point in one image, there should be at most one matching point in the other image
- Ordering
 - Corresponding points should be in the same order in both views
- Smoothness
 - We expect disparity values to change slowly (for the most part)

What defines a good stereo correspondence?

- 1. Match quality
 - Want each pixel to find a good match in the other image
- 2. Smoothness
 - If two pixels are adjacent, they should (usually) move about the same amount

Better objective function

$$E(d) = E_d(d) + \lambda E_s(d)$$
match cost: $E_d(d) = \sum_{(x,y)\in I} C(x,y,d(x,y))$

$$\sum_{sm} C(x,y,d(x,y)) d_{\overline{T}} \xrightarrow{SSD \text{ distance between windows}}_{\#x,y) \text{ and } J(x, \sqrt{4} (t(x,y)) d_q)$$
 $(p,q) \in \mathcal{E}$

$$\mathcal{E} : \text{set of neighboring pixels} \xrightarrow{4-\text{connected 8-connected}}_{\text{neighborhoodheighborhood}}$$

Smoothness cost

$$E_s(d) = \sum_{(p,q)\in\mathcal{E}} V(d_p, d_q)$$

$$V(d_p, d_q) = |d_p - d_q|$$

$$L_1 \text{ distance}$$

$$V(d_p, d_q) = \begin{cases} 0 & \text{if } d_p = d_q \\ 1 & \text{if } d_p \neq d_q \end{cases}$$
"Potts model"

$$E(d) = E_d(d) + \lambda E_s(d)$$

Can minimize this independently per scanline using dynamic programming (DP)

D(x, y, d) : minimum cost of solution such that d(x, y) = d

$$D(x, y, d) = C(x, y, d) + \min_{d'} \left\{ D(x - 1, y, d') + \lambda \left| d - d' \right| \right\}$$

Energy minimization via graph cuts

Energy minimization via graph cuts

- Graph Cut
 - Delete enough edges so that
 - · each pixel is connected to exactly one label node
 - Cost of a cut: sum of deleted edge weights
 - Finding min cost cut equivalent to finding global minimum of energy function

I(x, y)

J(x, y)

Simple pixel / window matching: choose the minimum of each column in the DSI independently:

$$d(x, y) = \underset{d'}{\operatorname{arg\,min}} C(x, y, d')$$

Matching windows

Similarity Measure

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

Formula

$$\sum_{(i,j) \in W} |I_1(i,j) - I_2(x+i,y+j)|$$

$$\sum_{i,j)\in W} \left(I_1(i,j) - I_2(x+i,y+j) \right)^2$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \bar{I}_1(i,j) - I_2(x+i,y+j) + \bar{I}_2(x+i,y+j)|$$

$$\sum_{(i,j)\in W} |I_1(i,j) - \frac{\bar{I}_1(i,j)}{\bar{I}_2(x+i,y+j)} I_2(x+i,y+j)|$$

$$\frac{\sum_{(i,j)\in W} I_1(i,j).I_2(x+i,y+j)}{\left[\sum_{(i,j)\in W} I_1^2(i,j).\sum_{(i,j)\in W} I_2^2(x+i,y+j)\right]}$$

http://siddhantahuja.wordpress.com/category/stereo-vision/

Before & After

Graph cuts

Ground truth

Y. Boykov, O. Veksler, and R. Zabih,
 <u>Fast Approximate Energy Minimization via Graph Cuts</u>, PAMI 2001
 For the latest and greatest: <u>http://www.middlebury.edu/stereo/</u>

Real-time stereo

<u>Nomad robot</u> searches for meteorites in Antartica <u>http://www.frc.ri.cmu.edu/projects/meteorobot/index.html</u>

Used for robot navigation (and other tasks)

• Several software-based real-time stereo techniques have been developed (most based on simple discrete search)

Fronto-Parallel Surfaces: Depth is constant within the region of local support

Monotonic Ordering - Points along an epipolar scanline appear in the same order in both stereo images Occlusion – All points are visible in each image

Image Brightness Constancy: Assuming Lambertian surfaces, the brightness of corresponding points in stereo images are the same.

Match Uniqueness: For every point in one stereo image, there is at most one corresponding point in the other image.

Stereo reconstruction pipeline

Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

What will cause errors?

- Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- Large motions
- Low-contrast image regions

Choosing the stereo baseline

Large Baseline

What's the optimal baseline?

- Too small: large depth error
- Too large: difficult search problem

Multi-view stereo ?

Beyond two-view stereo

The third view can be used for verification

Using more than two images

<u>Multi-View Stereo for Community Photo Collections</u> M. Goesele, N. Snavely, B. Curless, H. Hoppe, S. Seitz Proceedings of <u>ICCV 2007</u>,

