Deep Learning

Ali Farhadi Mohammad Rastegari CSE 576

Region-based Convolutional Networks (R-CNNs)

[R-CNN. Girshick et al. CVPR 2014]

Neural Networks

 $\mathcal{T} = \{(\mathbf{x_1}, \mathbf{t_1}), (\mathbf{x_2}, \mathbf{t_2}), \dots, (\mathbf{x_n}, \mathbf{t_n})\}$

 $\mathbf{W_1} = egin{array}{c} w_{11}, w_{12}, \dots, w_{1d} \ w_{21}, w_{22}, \dots, w_{2d} \ w_{31}, w_{32}, \dots, w_{3d} \end{array}$

 $H_l(\mathbf{X}) = \mathbf{W}_l \mathbf{X}$ $A_l(x_i) = \sigma(x_i)$

 $H_l(\mathbf{X}) = \mathbf{W}_l \mathbf{X}$ $A_l(x_i) = \sigma(x_i)$

Gradient Descend

Gradient Descend

$$S = \min_{\beta} \|\beta X - Y\|$$
$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} \|\beta X - Y\|$$
$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} \|\beta X - Y\|$$
$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} \|\beta X - Y\|$$
$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} \|\beta X - Y\|$$

$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} \|\beta X - Y\|$$

$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} \|\beta X - Y\|$$
$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} \|\beta X - Y\|$$
$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$S = \min_{\beta} ||\beta X - Y||$$

$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^m \left(y_i - \sum_{k=1}^n X_{ik} \beta_k \right) (-X_{ij}) \ (j = 1, 2, \dots, n).$$

$$\mathbf{y} = A_5(H_5(A_4(H_4(A_3(H_3(A_2(H_2(A_1(H_1(\mathbf{x}))))))))))$$

$$L(\mathbf{y}, \mathbf{t}) = L(A_5, \mathbf{t})$$

$$W_{3(ij)}^t = W_{3(ij)}^{t-1} - \eta \frac{\partial L}{\partial W_{3(ij)}}$$

$$\frac{\partial L}{\partial W_{3(ij)}} = \frac{\partial L}{\partial A_5} \cdot \frac{\partial A_5}{\partial H_5} \cdot \frac{\partial H_5}{\partial A_4} \cdot \frac{\partial A_4}{\partial H_4} \cdot \frac{\partial H_4}{\partial A_{3(i)}} \cdot \frac{\partial A_{3(i)}}{\partial H_{3(i)}} \cdot \frac{\partial H_{3(i)}}{\partial W_{3(ij)}}$$

$$H_l(\mathbf{X}) = \mathbf{W}_l \mathbf{X}$$

$$A_l(x_i) = \sigma(x_i)$$

$$H_l(\mathbf{X}) = \mathbf{W}_l \mathbf{X}$$

$$\sigma' = \sigma(1 - \sigma) \quad A_l(x_i) = \sigma(x_i)$$

Error Backpropagation

$$E_{5} = \frac{\partial L}{\partial A_{5}} \cdot \frac{\partial A_{5}}{\partial H_{5}}$$

$$E_{4} = E_{5} \cdot \frac{\partial H_{5}}{\partial A_{4}} \cdot \frac{\partial A_{4}}{\partial H_{4}}$$

$$E_{3} = E_{4} \cdot \frac{\partial H_{4}}{\partial A_{3}} \cdot \frac{\partial A_{3}}{\partial H_{3}}$$

$$E_{2} = E_{3} \cdot \frac{\partial H_{3}}{\partial A_{2}} \cdot \frac{\partial A_{2}}{\partial H_{2}}$$

$$E_{1} = E_{2} \cdot \frac{\partial H_{2}}{\partial A_{1}} \cdot \frac{\partial A_{1}}{\partial H_{1}}$$

$$\frac{\partial L}{\partial W_{l(ij)}} = E_{l+1} \cdot \frac{\partial H_{l+1}}{\partial A_{l(i)}} \cdot \frac{\partial A_{l(i)}}{\partial H_{l(i)}} \cdot \frac{\partial H_{l(i)}}{\partial W_{l(ij)}}$$
$$= E_{l+1} \cdot W_{l(:i)} \cdot (A_{l(i)}(1 - A_{l(i)}))^{\top} \cdot A_{l-1(j)}$$

- Loop until no change in loss
 - Y=Forward(X)
 - L = Compute Loss(Y,T)
 - G = Backprop (L)
 - Update Parameters

- Loop until no change in loss
 - ➤ Y=Forward(X)
 - L = Compute Loss(Y,T)
 - G = Backprop (L)
 - Update Parameters

- Loop until no change in loss
 - Y=Forward(X)
 - ▶ L = Compute Loss(Y,T)
 ▶ G = Backprop (L)
 ▶ Update Parameters $\frac{\partial L}{\partial W_{l(ij)}}$

- Loop until no change in loss
 - ➤ Y=Forward(X)
 - L = Compute Loss(Y,T)
 - ➢ G = Backprop (L)
 - Update Parameters

$$W^{t+1} = W^t - \eta^t \frac{\partial L}{\partial W_{l(ij)}}$$

Torch

• Torch 7.0

Facebook and Google DeepMind

- Based on LUA
- Very easy to design Neural Network
- Very convenient to use GPU

LUA

- Interpreter
- Variables are global by default
- Universal data structure : the table

```
my_table = { 1, 2, 3 }
my_table = { my_var = 'hello', my_other_var = 'bye' }
my_table = { 1, 2, 99, my_var = 'hello' }
my_function = function() print('hello world') end
my_table[my_function] = 'this prints hello world'
my_function()
print(my_table[my_function])
```

```
Torch 7.0 Copyright (C) 2001–2011 Idiap, NEC Labs, NYU
hello world
this prints hello world
```

Torch Tensor

		[0.00035]
th>	A:fill(1)	
1	1 1	
1	1 1	
1	1 1	
[tor	ch.DoubleTensor of size 3x3]	
		[0.0002s]
th>		

Simple Neural Network Training in Torch

```
require "nn"
mlp = nn.Sequential(); -- make a multi-layer perceptron
inputs = 2; outputs = 1; HUs = 20; -- parameters
mlp:add(nn.Linear(inputs, HUs))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(HUs, outputs))
```

Loss function

We choose the Mean Squared Error criterion.

criterion = nn.MSECriterion()

We create data on the fly and feed it to the neural network.

```
for i = 1,2500 do
  -- random sample
  local input= torch.randn(2); -- normally distributed example in 2d
  local output= torch.Tensor(1);
  if input[1]*input[2] > 0 then -- calculate label for XOR function
    output[1] = -1
  else
    output[1] = 1
  end
  -- feed it to the neural network and the criterion
  criterion:forward(mlp:forward(input), output)
  -- train over this example in 3 steps
  -- (1) zero the accumulation of the gradients
  mlp:zeroGradParameters()
  -- (2) accumulate gradients
  mlp:backward(input, criterion:backward(mlp.output, output))
  -- (3) update parameters with a 0.01 learning rate
  mlp:updateParameters(0.01)
end
```

```
> x = torch.Tensor(2)
> x[1] = 0.5; x[2] = 0.5; print(mlp:forward(x))
-0.6140
[torch.Tensor of dimension 1]
> x[1] = 0.5; x[2] = -0.5; print(mlp:forward(x))
0.8878
[torch.Tensor of dimension 1]
> x[1] = -0.5; x[2] = 0.5; print(mlp:forward(x))
0.8548
[torch.Tensor of dimension 1]
> x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))
-0.5498
[torch.Tensor of dimension 1]
```

Universal Approximation Theorem

A network with a single hidden layer containing a finite number of neurons (i.e., a multilayer perceptron), can approximate continuous functions.

Why Deep Network?

• Feature hierarchy (We will see later)

Multi-Class Classification

 $L(\mathbf{y},\mathbf{t}) = \|\mathbf{y}-\mathbf{t}\|^2$

Binary Class : $t \in \{-1, +1\}$ Multi Class : $t \in \{1, 2, 3, ..., c\}$ Unbalanced penalization

Multi-Class Classification

 $L(\mathbf{y}, \mathbf{t}) = \|\mathbf{y} - \mathbf{t}\|^2$

Soft Max

$$P(\mathbf{y}) = \frac{e^{y_i}}{\sum_{j=1}^c e^{y_j}}$$

Cross Entropy Loss

 $L(P,t) = -\log p_t$

Auto Encoder

All The Way Convolutional

Visualization

CNNs are expensive: Memory

Number of parameters to learn:

Memory :

- 60 M
- 140 M

- 475 M
- 1.1 GB

CNNs are expensive: Computation

Number of Operations :

- AlexNet \rightarrow 1.5B FLOPs
- VGG \rightarrow 19.6B FLOPs

Inference time on CPU :

- AlexNet \rightarrow ~3 fps
- VGG → ~0.25 fps

Convolution

Max Pooling

- Adds more non-linearity
- Robust against small spatial variations

Rectified Linear Unit ReLU

Generalization by Dropout

(a) Standard Neural Net

(b) After applying dropout.

AlexNet 2012

Alex Net in Torch

1	<pre>model = nn.Sequential()</pre>	
2	<pre>model:add(cudnn.SpatialConvolution(3,96,11,11,4,4,2,2))</pre>	11x11 conv, 96, /4, pool/2
3	<pre>model:add(cudnn.ReLU())</pre>	¥
4	<pre>model:add(nn.SpatialMaxPooling(3,3,2,2))</pre>	
5	<pre>model:add(cudnn.SpatialConvolution(96,256,5,5,1,1,2,2))</pre>	5x5 conv, 256, pool/2
6	<pre>model:add(cudnn.ReLU())</pre>	₩
7	<pre>model:add(nn.SpatialMaxPooling(3,3,2,2))</pre>	
8	<pre>model:add(cudnn.SpatialConvolution(256,384,3,3,1,1,1,1))</pre>	3x3 conv, 384
9	<pre>model:add(cudnn.ReLU())</pre>	₩
10	<pre>model:add(cudnn.SpatialConvolution(384,384,3,3,1,1,1,1))</pre>	
11	<pre>model:add(cudnn.ReLU())</pre>	3x3 conv, 384
12	<pre>model:add(cudnn.SpatialConvolution(384,256,3,3,1,1,1,1))</pre>	
13	<pre>model:add(nn.ReLU())</pre>	
14	<pre>model:add(nn.SpatialMaxPooling(3,3,2,2))</pre>	3x3 conv, 256, pool/2
15		
16	<pre>model:add(nn.View(256*6*6))</pre>	
17		
	model:add(nn.Linear(256*6*6, 4096))	fc. 4096
18	<pre>model:add(nn.Linear(256*6*6, 4096)) model:add(cudnn.ReLU())</pre>	fc, 4096
18 19	<pre>model:add(nn.Linear(256*6*6, 4096)) model:add(cudnn.ReLU()) model:add(nn.Dropout(0.5))</pre>	fc, 4096
18 19 20	<pre>model:add(nn.Linear(256*6*6, 4096)) model:add(cudnn.ReLU()) model:add(nn.Dropout(0.5)) model:add(nn.Linear(4096, 4096))</pre>	fc, 4096
18 19 20 21	<pre>model:add(nn.Linear(256*6*6, 4096)) model:add(cudnn.ReLU()) model:add(nn.Dropout(0.5)) model:add(nn.Linear(4096, 4096)) model:add(cudnn.ReLU())</pre>	fc, 4096 fc, 4096
18 19 20 21 22	<pre>model:add(nn.Linear(256*6*6, 4096)) model:add(cudnn.ReLU()) model:add(nn.Dropout(0.5)) model:add(nn.Linear(4096, 4096)) model:add(cudnn.ReLU()) model:add(nn.Dropout(0.5))</pre>	fc, 4096 fc, 4096 fc, 4096
18 19 20 21 22 23	<pre>model:add(nn.Linear(256*6*6, 4096)) model:add(cudnn.ReLU()) model:add(nn.Dropout(0.5)) model:add(nn.Linear(4096, 4096)) model:add(cudnn.ReLU()) model:add(nn.Dropout(0.5)) model:add(nn.Linear(4096, 1000)</pre>	fc, 4096 fc, 4096 fc, 1000

Going on GPU is easy in Torch

model = model:cuda()

Revolution of Depth

Vanishing Gradients

Revolution of Depth

Next:

Object Detection with CNNs