Descriptors III

CSE 576 Ali Farhadi

Many slides from Larry Zitnick, Steve Seitz

How can we find corresponding points?

How can we find correspondences?

SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor

Adapted from slide by David Lowe

Local Descriptors: Shape Context

Belongie & Malik, ICCV 2001

K. Grauman, B. Leibe

Bag of Words

codewords

Another Representation: Filter bank

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)

What about Scenes?

Demo : Rapid image understanding By Aude Oliva

<u>Instructions</u>: 9 photographs will be shown for half a second each. Your task is to **memorize these pictures**

Memory Test

Which of the following pictures have you seen ?

If you have seen the image clap your hands once

You have seen these pictures

You were tested with these pictures

In a glance, we remember the meaning of an image and its global layout but some objects and details are forgotten

Holistic scene representation: Shape of a scene

Table 1

- Finding a low-dimensional "scene space"
- Clustering by humans
 - Split images into groups
 - ignore objects, categories

environmental scenes.				
Property	S1	S2	S3	Total
Naturalness	65	12	0	77
Openness	6	53	24	83
Perspective	6	18	29	53
Size	0	0	47	47
Diagonal plane	0	12	29	41
Depth	18	12	29	59
Symmetry	0	0	29	29
Contrast	0	0	18	18

Spatial envelope properties of

Results are in %, for each of the three experimental steps. The total represents the percent of times the attribute has been used regardless of the stage of the experiment.

- Naturalness
 - natural vs. man-made environments

- Openness
 - decreases as number of boundary elements increases

- Roughness
 - size of elements at each spatial scale, related to fractal dimension

- Expansion (man-made environments)
 - depth gradient of the space

- Ruggedness (natural environments)
 - deviation of ground relative to horizon

Scene statistics

- DFT (energy spectrum)
 - throw out phase function (represents local properties)
- Windowed DFT (spectrogram)
 - Coarse local information
 - 8x8 grid for these results

Scene statistics

Figure 2. The first eight principal components for energy spectra of real-world scenes. The frequency $f_x = f_y = 0$ is located at the center of each image.

Figure 3. The first six principal components of the spectrogram of real-world scenes. The spectrogram is sampled at 4 × 4 spatial location for a better visualization. Each subimage corresponds to the local energy spectrum at the corresponding spatial location.

Scene classification from statistics

- Different scene categories have different spectral signatures
 - Amplitude captures roughness
 - Orientation captures dominant edges

Learning the spatial envelope

- Use linear regression to learn
 - DST (discriminant spectral template)
 - WDST (windowed discriminant spectral template)
- Relate spectral representation to each spatial envelope feature

Gist descriptor

Oliva and Torralba, 2001

- 8 orientations
- 4 scales
- <u>x 16</u> bins
 - 512 dimensions

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004; Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...

Example visual gists

Oliva & Torralba (2001)

Features

- Where:
 - Interest points
 - Corners
 - Blobs
 - Grid
 - Spatial Pyramids
 - Global
- What: (Descriptors)
 - Sift, HOG
 - Shape Context
 - Bag of words
 - Filter banks

