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What is an image? 
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1. We sample the 
      image to get a 
      discrete set of 
      pixels with  
      quantized values. 
 
2.   For a gray tone  
      image there is one 
      band F(r,c), with 
      values usually 
      between 0 and  
      255. 
 
3.   For a color image 
      there are 3 bands 
      R(r,c), G(r,c), B(r,c) 



F(     ) =  

Image Operations 
(functions of functions) 
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Image Operations 
(functions of functions) 

0.1 

0 

0.8 

0.9 

0.9 

0.9 

0.2 

0.4 

0.3 

0.6 

0 

0 

0.1 

0.5 

0.9 

0.9 

0.2 

0.4 

0.3 

0.6 

0 

0 

0.1 

0.9 

0.9 

0.2 

0.4 

0.3 

0.6 

0 

0 

0.1 

0.5 7 



F(     ,      ) =   

Image Operations 
(functions of functions) 
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Local image functions 

F(     ) =  
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What does it do? 
• Replaces each pixel with an 

average of its neighborhood 
 

• Achieve smoothing effect 
(remove sharp features) 

1 1 1 

1 1 1 

1 1 1 

Slide credit: David Lowe (UBC) 

],[g ⋅⋅

Box Filter 
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Smoothing with box filter 
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Practice with linear filters 
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Source: D. Lowe 
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Practice with linear filters 

0 0 0 

0 1 0 

0 0 0 

Original Filtered  
(no change) 

Source: D. Lowe 
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Practice with linear filters 
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Practice with linear filters 
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Source: D. Lowe 
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Practice with linear filters 
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Source: D. Lowe 
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Practice with linear filters 
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Sharpening filter 
- Accentuates differences with local 
average 

Source: D. Lowe 
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Sharpening 

Source: D. Lowe 
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Other filters 
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Other filters 
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Basic gradient filters 
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Gaussian filter 

* = 
Input image f 

Filter h 
Output image g 



Gaussian vs. mean filters 

What does real blur look like? 



• Spatially-weighted average 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

0.003   0.013   0.022   0.013   0.003 
0.013   0.059   0.097   0.059   0.013 
0.022   0.097   0.159   0.097   0.022 
0.013   0.059   0.097   0.059   0.013 
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5 x 5, σ = 1 

Slide credit: Christopher Rasmussen  

Important filter: Gaussian 
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Smoothing with Gaussian filter 
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Smoothing with box filter 
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Gaussian filters 
• What parameters matter here? 
• Variance of Gaussian: determines extent of 

smoothing 
 

Source: K. Grauman 
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Smoothing with a Gaussian 

… 

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 
kernel, and controls the amount of smoothing. 

Source: K. Grauman 
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2D edge detection filters 

      is the Laplacian operator (sum of 2nd derivatives): 

Laplacian of Gaussian 
or LoG filter 

Gaussian x derivative of Gaussian 
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Often approximated by 



First and second derivatives 

Original First Derivative x Second Derivative x, y 

What are these good for? 



Subtracting filters 

Original Second Derivative Sharpened 



for some 

Combining filters 

* 

* 
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= 
It’s also true: 



Combining Gaussian filters 

More blur than either individually (but less than                     )       

* = ? 



Separable filters 

* = 

Compute Gaussian in horizontal 
direction, followed by the 
vertical direction. 

Not all filters are separable.  
Freeman and Adelson, 1991 

Much faster! 



Sums of rectangular regions 

243 239 240 225 206 185 188 218 211 206 216 225 

242 239 218 110 67 31 34 152 213 206 208 221 

243 242 123 58 94 82 132 77 108 208 208 215 

235 217 115 212 243 236 247 139 91 209 208 211 

233 208 131 222 219 226 196 114 74 208 213 214 

232 217 131 116 77 150 69 56 52 201 228 223 

232 232 182 186 184 179 159 123 93 232 235 235 

232 236 201 154 216 133 129 81 175 252 241 240 

235 238 230 128 172 138 65 63 234 249 241 245 

237 236 247 143 59 78 10 94 255 248 247 251 

234 237 245 193 55 33 115 144 213 255 253 251 

248 245 161 128 149 109 138 65 47 156 239 255 

190 107 39 102 94 73 114 58 17 7 51 137 

23 32 33 148 168 203 179 43 27 17 12 8 

17 26 12 160 255 255 109 22 26 19 35 24 

How do we compute the sum of 
the pixels in the red box? 

After some pre-computation, this 
can be done in constant time for 
any box. 

This “trick” is commonly used for computing 
Haar wavelets (a fundemental building block of 
many object recognition approaches.) 

If an image will be repeatedly convolved 
with different box filters, we can  
precompute a summed area table 

s(i,j) = ΣΣf(k,l) 
i   j 

k=0 l=0 



Sums of rectangular regions 

The trick is to compute an 
“integral image.”  Every pixel is 
the sum of itself and its 
neighbors to the upper left. 
 
Sequentially compute using: 



Sums of rectangular regions 

The trick is to compute an “integral 
image.”  Every pixel is the sum of 
itself and its (modified) N and W 
neighbors minus its (modified) NW 
neighbor. 
 
Compute sequentially using: 

1 2   3 
4 5   6 
7     8   9 

1 1 3 1 3 6 

1 3 6 
5 

1  3  6 
5   ? 5+5+3-1=12 

Result: 
1  3    6 
5 12  21 
12  27  45 



Sums of rectangular regions 

A B 

C D 

Area of red rectangle is found 
using: 
 

A + D – B - C 



Linear vs. Non-Linear Filters 

 

a. original image with Gaussian noise, b. Gaussian filtered, c. median filtered, d. bilateral filtered 
e. original image with shot noise, f. Gaussian filtered, g. median filtered, h. bilateral filtered 



Spatially varying filters 

• Some filters vary spatially.   
 
• The bilateral filter is the product of a domain kernel (Gaussian)  
      and a data dependent range kernel. 
 
• d(i,j,k,l) = exp[(-(i-k)2+(j-l)2)/2σd

2] is the domain kernel 
 

• r(i,j,k,l)  = exp[-||f(i,j)-f(k,l)||2/2σr
2] is the range kernel 

 
• w(i,j,k,l) = d(i,j,k,l) * r(i,j,k,l) is their product 

 
• g(i,j) = Σk,l f(k,l) w(i,j,k,l) / Σk,l w(i,j,k,l) is the bilateral filter 

 
 from Szeliski text 



* 

* 

* 

input output 

Same Gaussian kernel everywhere. 
Slides courtesy of Sylvian Paris 

Constant blur: same kernel everywhere 
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* 

* 

* 

input output 

The kernel shape depends on the image content. 
Slides courtesy of Sylvian Paris 

Bilateral filter: kernel depends on intensity  

Maintains edges when blurring! 
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Borders 

What to do about image borders: 

black fixed periodic reflected 

51 



Image Sampling 

F(     ) =  

F(     ) =  



Image Scaling 

This image is too big to 
fit on the screen.  How 
can we reduce it? 
 
How to generate a half- 
sized version? 



Image sub-sampling 

Throw away every other row and 
column to create a 1/2 size image 

- called image sub-sampling 

1/4 

1/8 



Image sub-sampling 

1/4  (2x zoom) 1/8  (4x zoom) 

Why does this look so bad? 

1/2 



Down-sampling 

• Aliasing can arise when you sample a continuous signal or image 
– occurs when your sampling rate is not high enough to capture the 

amount of detail in your image 
– Can give you the wrong signal/image—an alias 
– formally, the image contains structure at different scales 

• called “frequencies” in the Fourier domain 

– the sampling rate must be high enough to capture the highest frequency 
in the image 



Subsampling with Gaussian  
                                pre-filtering 

G 1/4 

G 1/8 

Gaussian 1/2 

Solution:  filter the image, then subsample 
• Filter size should double for each ½ size reduction.  



Finale 

• Filtering is just applying a mask to an image. 
• Computer vision people call the linear form of 

these operations “convolutions”. They are 
actually “correlations,” since the true convolution 
inverts the mask. 

• There are many nonlinear filters, too, such as 
median filters and morphological filters. 

• Filtering is the lowest level of image analysis and 
is taught heavily in image processing courses.  

58 


	Images and Filters
	What is an image?
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Local image functions
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Practice with linear filters
	Sharpening
	Other filters
	Other filters
	Basic gradient filters
	Gaussian filter
	Gaussian vs. mean filters
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Gaussian filters
	Smoothing with a Gaussian
	2D edge detection filters
	First and second derivatives
	Subtracting filters
	Combining filters
	Combining Gaussian filters
	Separable filters
	Sums of rectangular regions
	Sums of rectangular regions
	Sums of rectangular regions
	Sums of rectangular regions
	Linear vs. Non-Linear Filters
	Spatially varying filters
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Image Sampling
	Image Scaling
	Image sub-sampling
	Image sub-sampling
	Slide Number 56
	Subsampling with Gaussian �                                pre-filtering
	Finale

