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3D model

« “Digital copy” of real object

« Allows us to
— Inspect details of object
— Measure properties
— Reproduce in different material

« Many applications
— Cultural heritage preservation
— Computer games and movies
— City modelling
— E-commerce




Applications: cultural heritage

SCULPTEUR European project




Applications: art

Block Works Precipitate 111 2004
Mild steel blocks 80 x 46 x 66 cm

Domain Series Domain VIl Crouching
1999 Mild steel bar 81 x 59 x 63 cm




Applications: structure engineering

BODY / SPACE / FRAME, Antony Gormley, Lelystad, Holland




Applications: 3D indexation
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Applications: archaeology

e “forma urbis romae” project

Fragments of the City: Stanford's Digital Forma Urbis Romae Project
David Koller, Jennifer Trimble, Tina Najbjerg, Natasha Gelfand, Marc Levoy
Proc. Third Williams Symposium

on Classical Architecture,

Journal of Roman Archaeology

supplement, 2006.

1186 fragments




Applications: large scale modelling

\

[Cornelis08] [Goesele07]



Applications: Medicine
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Scanning technologies

» Laser scanner, coordinate measuring machine
— \Very accurate
— Very Expensive
— Complicated to use

Minolta

Contura CMM



Medical Scanning System




The “Us” Data Set (subset)




3d shape from photographs

“Estimate a 3d shape that would generate the
Input photographs given the same material,
viewpoints and illumination”

viewpoint

geometry material illumination

S




Photometric Stereo

e Estimate the surface normals of a given scene
given multiple 2D images taken from the same
viewpoint, but under different lighting conditions.

* Basic photometric stereo required a Lambertian
reflectance model:
l=pn-v
where | is pixel , nisthe normal, vis the

lighting direction, and p is diffuse albedo constant,
which is a reflection coefficient.



Basic Photometric Stereo




Basic Photometric Stereo
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Basic Photometric Stereo

* K light sources

* Lead to Kimages R,(p,q), -..,R¢(p,q) each from
just one of the light sources being on

* Forany (p,q), we get Kintensities |,...I,

* Leads to a set of linear equations of the form
| = pnev,

e Solving leads to a surface normal map.



Photometric Stereo

3D normals




3d shape from photographs

Photograph based 3d reconstruction Is:

practical
fast
non-intrusive
low cost
Easily deployable outdoors
x “low” accuracy
x Results depend on material properties



Reconstruction

Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape




Reconstruction

« Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape

* “Images of the same object or scene”
 Arbitrary number of images (from two to thousands)
 Arbitrary camera positions (camera network or video sequence)
 Calibration may be initially unknown

» “Representation of 3D shape”
* Depth maps
 Meshes
* Point clouds
« Patch clouds
* Volumetric models
« Layered models



Multiple-baseline stereo

A
AR R En -
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M. Okutomi and T. Kanade, “A Multiple-Baseline Stereo System,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 15(4):353-363 (1993).



http://www.ri.cmu.edu/pub_files/pub2/okutomi_m_1993_1/okutomi_m_1993_1.pdf

Reconstruction from silhouettes

Can be computed robustly
Can be computed efficiently




Reconstruction from Silhouettes

« The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all
Views

Binary Images =—p ' ‘ I



Reconstruction from Silhouettes

« The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all
Views

voxel space

v

Binary Images =—p

Finding the silhouette-consistent shape (visual hull):
« Backproject each silhouette
 Intersect backprojected volumes



Calibrated Image Acquisition

Calibrated Turntable

Selected Flower Images



Space Carving in General

Image 1

R e
~ 0 - P

Space Carving Algorithm

* Initialize to a volume V containing the true scene

« Choose a voxel on the outside of the volume

* Project to visible input images

« Carve if not photo-consistent (inside object’s silhouette)
« Repeat until convergence

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999



http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Our 4-camera light-striping stereo system

(now deceased)




Calibration Object

The idea is to snap
Images at different
depths and get a

lot of 2D-3D point
correspondences.




Surface Modeling and Display
from Range and Cejor Data
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Infroduction

Goal

* develop robust a %oruthms for constructm9

3D models from nge & color data

* use those models to produce realistic
renderings of the scanned objects




Surface Reconsfuction

Step 1: Data acquisition
Obtain range data that covers the
object. Filter, remove background.

Step 2: Registration
Register the range maps into a common
coordinate system.

Step 3: Integration
Integrate the registered range data into
A single surface representation.

Step 4: Optimization
Fit the surface more accurately to the
data, simplity the representation.




Carve space in cithes

Observed lmage

Sensor
surface plane

|
:
Leer="

[gj“
Cutaids Inaids

Volume under
consideration

Label cubes

» Project cube to image plane (hexagon)
» Test against data in the hexagon




3D space Is made up of many cubes.

Image plane
(u,v,d) depth map
e

/— (X,y,Z)

one of many cubes
OUTSIDE in virtual 3D cube space

-




Several views

Processing order: Q
FOR EACH cube Vv
FOR EACH view

[ |

Rules: A
any view thinks cube’s out O
= it's out
every view thinks cube’s in
= it's In
AR
=Y it's at boundary




Hieyrarchical space carving

*Big cubes =) fast, poor results
e Small cubes =) glow, more accurate results

¢ Combination = octrees

RULES: ecube’s out =) done
ecube’s in =) done
¢ clse => recurse



Hieyrarchical space carving

*Big cubes =) fast, poor results
e Small cubes =) glow, more accurate results

¢ Combination = octrees

RULES: ecube’s out =) done
ecube’s in =) done
¢ clse => recurse



The rest of the chair




Same for a husky pup




Optimizing The dog mesh

Registefed points

“l o
e

Initial mesh

Optimized mesh




View dependent Fexturing




YView  Opdivns




More: Space Carving Results: African Violet

Input Image (1 of 45) Reconstruction

Reconstruction Reconstruction

Source: S. Seitz



More: Space Carving Results: Hand

Input Image
(1 of 100)

Views of Recostruction



Stereo from community photo collections

« Up to now, we've always assumed that camera
calibration is known

* For photos taken from the Internet, we need structure
from motion technigues to reconstruct both camera

positions and 3D points. (SEE POSTED VIDEO)
flickr:. v

Home You Organize & Create Contacts Groups Explore Upload
Search Photos Groups People
r - Full Text
| Everyane's Uploads v |statue of liberty | search [
Sort: Relevant  Recent  Interesting View. Small Medium = Detail = Slideshow

From EdZa From Jesus...

From alabs From Bighs . Take From laurenbou.. 7

From laverrue
From dmp0309

From laurenbou... From StephiGra..






Head Reconstruction from Uncalibrated Internet Photos

Input: Internet photos in different poses and
expressions

work of
Shu Liang



Recognizing Deformable Shapes

Salvador Ruiz Correa
(CSE/EES76 Computer Vision I)



Goal

We are interested in developing algorithms for
recognizing and classifying deformable object
shapes from range data.

3-D Output
3-D Laser Scanner Surface
Range Mesh
data Post-
— processing '
(Cloud of
» 3-D points)

m This is a difficult problem that is relevant in several
application fields.



What Kind Of Deformations?




Component-Based Methodology

Describe
spatial
configuration

1

Numeric
Signatures

define

2
Components

3
Symbolic
Signatures

Overcomes the limitations
of the alignment-verification

approach
4
Architecture Recognition And
of Classification Of
Classifiers Deformable Shapes




Assumptions

All shapes are represented as oriented surface
meshes of fixed resolution.

The vertices of the meshes in the training set are in
full correspondence.

Finding full correspondences : hard problem yes ... but
it is approachable ( use morphable models
technique: Blantz and Vetter, SIGGRAPH 99; C. R.
Shel’r)on, TJCV, 2000; Allen et al., SIGGRAPH
2003).



Four Key Elements To Our Approach

1

Numeric
Signhatures

2

Components

3

Symbolic
Sighatures

Architecture

of
Classifiers

Recognition And
Classification Of
Deformable Shapes



Numeric Signhatures

2

Components

3

Symbolic
Signatures

N

N

4

Architecture
of
Classifiers




The Spin Image Signature

P is the selected vertex.

X is a contributing point X
of the mesh. n

tangent plane at P

a is the perpendicular distance from X to P's surface normal.

B is the signed perpendicular distance from X to P's tangent plane.



Spin Image Construction

* A spin image is constructed
- about a specified oriented point o of the object surface
- with respect to a set of contributing points C, which is
controlled by maximum distance and angle from o.

+ It is stored as an array of accumulators S(a,) computed via:
* For each point c in C(0)

1. compute o and B for c.
2. increment S (o,B)




Numeric Signhatures: Spin Images

Rich set of surface shape descriptors.

Their spatial scale can be modified to include local and non-
local surface features.

Representation is robust to scene clutter and occlusions.



Compaonents

Numeric
Signatures

define

3

Symbolic
Signatures

4

Architecture
of
Classifiers




How To Extract Shape Class Components?

Training Set

Select
Seed

PoIRtS

Compute Region
NUMETIC =1 Growing )
SIghatures Algorithm

Component
Detector

Grown components |
around seeds



Component Extraction Example

Selected 8 seed Labeled
points by hand Surface Mesh

Region
Growing

ﬁ

Detected

Grow one region at the time
(get one detector components on a
per component) training sample



How To Combine Component Information?
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Symbolic Sighature

Labeled
Surface Mesh Symbolic
" S Signature at P
P
Geometric
Configuration

)

Matrix storing
component
labels



Symbolic Signatures Are Robust
To Deformations

Relative position of components is
stable across deformations:
experimental evidence



\rchitect  Classifi

1

Numeric
Signatures

|

Components
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Symbolic
Sighatures




Proposed Architecture

Verify spatial configuration
of the components

: I

Class

Symbolic (AR

-1

(Abnormal)

Surface Two classification stages
Mesh



Architecture Implementation

ALL our classifiers are (off-the-shelf) v-Support Vector
Machines (v-SVMs) (Schalkopf et al., 2000 and 2001).

Component (and symbolic signature) detectors are one-
class classifiers.

Component label assignment: performed with a multi-
way classifier that uses pairwise classification
scheme.

Gaussian kernel.



Experimental Validation

Recognition Tasks: 4 (T1 - T4)
Classification Tasks: 3 (TH - T7)
No. Experiments: 5470

Rotary Table Setup

&

Recognition Classification



Shape Classes




Enlarging Training Sets Using Virtual

Samples

Morphs

Twist (bdeg)
+ Taper
- Push

/ ¥ Spherify (10%)

Push
V& Twist (10 deg)
i +Scale (1.2)

Global Morphing
Operators

Electrical Engineering

Originals

D5y

Physical Modelmg

University of Washington



Task 1: Recognizing Single Objects (1)

No. Shape classes: 9.

Training set size: 400 meshes.
Testing set size: 200 meshes.

No. Experiments: 1960.

No. Component detectors:3.

No. Symbolic signature detectors: 1.
Numeric signature size: 40x40.
Symbolic signhature size: 20x20.

No clutter and occlusion.



Task 1: Recognizing Single Objects (2)

Snowman: 93%. Human head: 97.7%.
Rabbit: 92%. Human face: 76%.
Dog: 89%.

Cat: 85.5%.

Cow: 92%.

Bear: 94%.
Horse: 92.7%.

Recognition rates (true positives)
(No clutter, no occlusion, complete models)



Tasks 2-3: Recognition In Complex Scenes (1)

No. Shape classes: 3.

Training set size: 400 meshes.
Testing set size: 200 meshes.

No. Experiments: 1200.

No. Component detectors:3.

No. Symbolic signature detectors: 1.
Numeric signature size: 40x40.
Symbolic signhature size: 20x20.

T2 - low clutter and occlusion.



Task 2-3: Recognition in Complex

Scenes (2)
Shape True False True False
Class |Positives | Positives | Positives | Positives
Snowmen 91% 31% 87.5% 28%
Rabbit 90.2% 27.6% 84.3% 24%
Dog 89.6% | 346% | 8812% | 22.1%
Task 2 Task 3




in Complex

ion

Recogni

Task 2-3
Scenes




Task 4: Recognizing Human Heads (3)




Task 5: Classifying Normal vs.
Abnormal Human Heads (1)

Shape Classification
Classes Accuracy %
Normal vs. 98
Abnormal 1
Normal vs. 100
Abnormal 2
Abnormal 1 vs. 3 98
Abnormal 1 vs. 4 97
Abnormal 1vs. 5 92




Task 6: Classifying Normal vs. Abnormal Human
Heads In Complex Scenes(1)

Shape Classification

Classes Accuracy 7%
Normal vs. 88
Abnormal 1




Task 7: Classifying Normal vs. Abnormal
Neurocranium (2)

Shape Classificatio

Classes n Accuracy
%

Normal vs. 89
Abnormal




Main Contributions (1)

A novel symbolic signature representation of
deformable shapes that is robust to intra-
class variability and missing information, as
opposed to a numeric representation which is
often tied to a specific shape.

A novel kernel function for quantifying
symbolic signature similarities.



Main Contributions (2)

A region growing algorithm for learning shape class
components.

A novel architecture of classifiers for abstracting the
geometry of a shape class.

A validation of our methodology in a set of large scale
recognition and classification experiments aimed at
applications in scene analysis and medical diagnosis.



