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Introduction
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Image coordinates,
resizing

Filters and convolutions

Interpolation and
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Machine Learning
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Szeliski, Chapter 1
Brown, M. S. (2019). ICCV 2019 tutorial on understanding color and the
in-camera image processing pipeline for computer vision.

Szeliski, Chapter 2.1, 3.6
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Szeliski, Chapter 5.1-5.2
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Interpolation and optimization

* Interpolation
* Pyramids

* Blending

 Resampling (rotations, etc.)

* Data Fitting

e Regularization and variational techniques
* Markov Random Fields

Richard Szeliski CSE 576 - Interpolation and Optimization 8



Pyramids

* Interpolation: scaling up

* Decimation: scaling down

* Image pyramids

* (Invertible) difference pyramids
o tiiopelets
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ecall from previous lecture

General resizing

Resample the image 19 & new pixel grid

DD O OO

)

76

Bilinear interpolation via filtering

79

Richard Szeliski
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General resampling General resam

Resample the image §
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2D interpolation filters

h(z,y)

Port functon) parforms
béinear interpolation

Bicubic even better
o f3d degree

o

*  Can also be implemented by convolton filer

80

81
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Bicubic vs bilinear

Haw %o interpolate?

Evaluate f defween grid paints

Bilinear interpolation via filtering
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Interpolation
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Figure 3.27 Signal interpolation, g(i) = >, f(k)h(i — rk): (a) weighted summation of
input values; (b) polyphase filter interpretation.
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Interpolation — bicubic, windowed sinc

(a) (b)

() (d
Figure 3.28 Two-dimensional image interpolation: (a) bilinear; (b) bicubic (a = —1); (c)
bicubic (a = —0.5); (d) windowed sinc (nine taps).

More advanced topic: super-resolution
(Computational Photography lecture)

[=—windowed-sinc|

_‘fﬂ‘_ 05 olo = windowed-sinc| 0.5
== cubic a=-0.5 -20 4 = cubic 2=-0.5
[==cubic a=-1 - tent

== cubic a=-1

05+ -200 <

(a) (b)

Figure 3.29 (a) Some windowed sinc functions and (b) their log Fourier transforms: raised-
cosine windowed sinc in blue, cubic interpolators (¢ = —1 and a = —0.5) in green and
purple, and tent function in brown. They are often used to perform high-accuracy low-pass
filtering operations.

While most graphics cards use the bilinear kernel (optionally combined with a MIP-
map—see Section 3.5.3), most photo editing packages use bicubic interpolation. The cu-
bic interpolant is a C'! (derivative-continuous) piecewise-cubic spline (the term “spline” is

synonymous with “piecewise-polynomial”)'* whose equation is
1—(a+3)2*+ (a+2)|z]* if [z] <1
h(z)=<¢ a(|lz|—1)(|z| —2)? if 1<|z| <2 (3.79)
0 otherwise,

where a specifies the derivative at =z = 1 (Parker, Kenyon, and Troxel 1983). The value of

Richard Szeliski CSE 576 - Interpolation and Optimization 28



Decimation (downsampling)

Iy ]
Ny N
[ N ]
N
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1A —Linear
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0.8 —Cubic a=-1
(a) (b) ' —Cubic a=-0.5
0.6 —Wind. sinc
Figure 3.30 Signal decimation: (a) the original samples are (b) convolved with a low-pass ' _splggz()oo
filter before being downsampled. 04 -
02
0 T T T
0.1 02 03 04 0.5
-0.2
Figure 3.31 Frequency response for some 2x decimation filters. The cubic a = —1 filter

has the sharpest fall-off but also a bit of ringing; the wavelet analysis filters (QMF-9 and
JPEG 2000), while useful for compression, have more aliasing.

Richard Szeliski CSE 576 - Interpolation and Optimization 31



Multi-resolution image pyramids

* Commonly used in coarse-to-fine /V\\
matching, optical flow, o ’@\ ,
stereo, blending, ... \

/
.. deep neural networks medium ﬁ\\ /=1
N\

/o \ \

o alv
/o o & o & o o4&

Figure 3.32 A traditional image pyramid: each level has half the resolution (width and
height), and hence a quarter of the pixels, of its parent level.
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“Gaussian” pyramid

e Uses “binomial” (not real Gaussian) downsampling kernel

416 |4
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“Laplacian” pyramid

e Burt & Adelson’s
“Laplacian” is a
difference of
(interpolated)
“Gaussians”

Richard Szeliski

Laplacian
level
4

(c)

Laplacian
level
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Laplacian
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(a)

left pyramid right pyramid blended pyramid
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Laplacian pyramid coding (compression

Gaussian Laplacian Quantization geconstructed Reconstructed
planes planecs Laplacians Gaussians
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Fig. 10. A summary of the steps in Laplacian pyramid coding and decoding. First, the original image g, (lower left) is used to generate

Gaussian pyramid levels g, g,, ... through repeated local averaging. Levels of the Laplacian pyramid L, L,, ... are then computed as
the differences between adjacent Gaussian levels. Laplacian pyramid elements are quantized to yield the Laplacian pyramid code C,,
C,, C,, .... Finally, a reconstructed image r,, is generated by summing levels of the code pyramid.
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Laplacian pyramid

Richard Szeliski
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Figure 3.33  The Laplacian pyramid. The yellow images form the Gaussian pyramid, which
is obtained by successively low-pass filtering and downsampling the input image. The blue
images, together with the smallest low-pass image, which is needed for reconstruction, form
the Laplacian pyramid. Each band-pass (blue) image is computed by upsampling and inter-
polating the lower-resolution Gaussian pyramid image, resulting in a blurred version of that
level’s low-pass image, which is subtracted from the low-pass to yield the blue band-pass

CSE 576 - Interpolation and Optimization
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Laplacian pyramid blending

Figure 3.41 Laplacian pyramid blending (Burt and Adelson 1983b) (©) 1983 ACM: (a) orig-
inal image of apple, (b) original image of orange, (c¢) regular splice, (d) pyramid blend.

Richard Szeliski CSE 576 - Interpolation and Optimization
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Pyramid Blending

(d)

Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM
Transactions on Graphics, 42(4), October 1983, 217-236.

Richard Szeliski CSE 576 - Interpolation and Optimization

38


http://www-bcs.mit.edu/people/adelson/publications/abstracts/spline83.html

Richard Szeliski

Laplacian
level
4

Laplacian
level
2

Laplacian
level
0

(a)

left pyramid

(g)

CSE 576 - Interi gt pyramidation

(k)

blended pyramid

39



Laplacian pyramid blending

(
(
(

(b) (c)
(b)

(c) (d)

Figure 3.43 Laplacian pyramid blend of two images of arbitrary shape (Burt and Adelson
1983b) © 1983 ACM: (a) first input image; (b) second input image; (c) region mask; (d)
blended image.

)
)
)
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Interpolation and optimization

 Resampling (rotations, etc.)
* Data Fitting
e Regularization and variational techniques

 Markov Random Fields

Richard Szeliski CSE 576 - Interpolation and Optimization 42



lmage warping

Geometric Transforms

Richard Szeliski CSE 576 - Interpolation and Optimization
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lmage Warping

* image filtering: change range of image

f

* 9(x) = h{f(x)) .

N D

—»

X

* image warping: change domain of image

f

* 9(x) = f(h(x)) .

NS o

—

X
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lmage Warping

* image filtering: change range of image

Richard Szeliski CSE 576 - Interpolation and Optimization
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Parametric (global) warping

* Examples of parametric warps:

perspective

Richard Szeliski CSE 576 - Interpolation and Optimization

cylindrical
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2D coordinate transformations

* translation: X' =x+t x=(xy)

* rotation: xX’=Rx+1t

* similarity: xX'=sRx+t

e affine: xX'=Ax+t

* perspective: X' =Hx x=(xy1)

(x is a homogeneous coordinate)

* These all form a nested group (closed w.r.t. inversion)

* How many parameters for each one?

Richard Szeliski CSE 576 - Interpolation and Optimization
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lmage Warping

* Given a coordinate transform x” = h(x) and a source image f(x), how
do we compute a transformed image g(x’) = f(h(x))?

Richard Szeliski CSE 576 - Interpolation and Optimization
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Forward Warping

* Send each pixel f(x) to its corresponding location x” = h(x) in g(x’)

 What if pixel lands “"between” two pixels?

Richard Szeliski CSE 576 - Interpolation and Optimization
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Forward Warping

* Send each pixel f(x) to its corresponding location x” = h(x) in g(x’)

Richard Szeliski

 What if pixel lands “"between” two pixels?

* Answer: add “contribution” to several pixels,
normalize later (splatting)

=
I
il

L.

fix) g(x’)
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Inverse Warping

* Get each pixel g(x’) from its corresponding location x” = h(x) in f(x)

« What if pixel comes from “between” two pixels?

Richard Szeliski CSE 576 - Interpolation and Optimization
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Inverse Warping

* Get each pixel g(x’) from its corresponding location x” = h(x) in f(x)

Richard Szeliski

« What if pixel comes from “between” two pixels?

* Answer: resample color value from
interpolated (prefiltered) source image

S

CSE 576 - Interpolation and Optimization 52




Interpolation

* Possible interpolation filters:
nearest neighbor

bilinear

bicubic (interpolating)

sinc / FIR (finite impulse resp.)

* Needed to prevent “jaggies”
and “texture crawl”

Gi | resizing i Gi
S——41-o—0—0 oL Rl
ol o o olold b o o
IR olold & o o
IEIEEKER] Y loloid 6 oo
IRIEER! oloid b o of
olold & oo

fxy) fxy)
73 74
Neares! t neighl Bil

76 77

Bilinear interpolation via filtering 2D interpolation filters

Richard Szeliski CSE 576 - Interpolation and Optimization
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Prefiltering

Essential for downsampling (decimation) to prevent aliasing

MIP-mapping [Williams'83]:
1. build pyramid (but what decimation filter?):

* block averaging
* Burt & Adelson (5-tap binomial)

« 7-tap wavelet-based filter (better) el k(- 1 pinl
2. trilinear interpolation

* bilinear within each 2 adjacent levels d +
level k-2 v\
* linear blend between levels (determined by pixel size) V7

Richard Szeliski CSE 576 - Interpolation and Optimization
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General mesh warping

iy
i 7 11 13

Figure 3.51 Image warping alternatives (Gomes, Darsa, Costa et al. 1999) (©) 1999 Morgan
Kaufmann: (a) sparse control points — deformation grid; (b) denser set of control point
correspondences; (c) oriented line correspondences; (d) uniform quadrilateral grid.

Richard Szeliski CSE 576 - Interpolation and Optimization
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Image morphing

Richard Szeliski

Y

M

Figure 3.53 Image morphing (Gomes, Darsa, Costa et al. 1999) (©) 1999 Morgan Kaufmann.
Top row: if the two images are just blended, visible ghosting results. Bottom row: both
images are first warped to the same intermediate location (e.g., halfway towards the other
image) and the resulting warped images are then blended resulting in a seamless morph.
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Image morphing — Black or White video

For each pixel X in the destination
DSUM =100
weightsum = ()
For cach line P, @,
calculate w,v hased on P, @,
calculate X based on u,v and P,'Q;"
calculate displacement ), = X" - X, for this line
dist = shortest distance from X 10 P; @
weight = (length® | (a + dist))*
DSUM «= D, * weight
weightsum += weight
X'= X + DSUM | weightsum
3 I X)w !

P
Source Image

gelX")

(a) (b)

Figure 3.52 Line-based image warping (Beier and Neely 1992) (©) 1992 ACM: (a) distance

computation and position transfer; (b) rendering algorithm; (c) two intermediate warps used
for morphing.

https://www.youtube.com/watch?v=F2AitTPI5U0Q
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Filtering, resampling, pyramids, blending

* Linear and separable filtering

* Non-linear filtering

* Pyramids

* Blending

* Resampling (rotations, etc.)

* Data Fitting

e Regularization and variational techniques
* Markov Random Fields

Richard Szeliski CSE 576 - Interpolation and Optimization
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Data fitting and optimization
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4.1

4.2

Richard Szeliski

Chapter 4

Model fitting and optimization

Scattered data interpolation . . . . . .. ... oL 194
4.1.1 Radial basis functions . . . . . ... ... . Lo 196
4.1.2  Overfitting and underfitting . . . . . . ... ... ... ... 198
4.1.3 Robustdatafitting . . . . ... .. . Lo 202
Varational methods and regularization . . . . ... ... ... ... ... 204
4.2.1 Discrete energy minimization . . . . . . . ... ... 207
422 Total variation . . . . . . .. ..o oo 210
423 Bilateral solver . . .. . ... L L oo 211
4.2.4  Application: Interactive colorization . . . . . . . . .. .. ... ... 212
Markov random fields . . . . . . . ... ..o oL 212
4.3.1 Conditional random fields . . . .. . ... ... .. oo 222
4.3.2  Application: Image restoration . . . . . . . . .. ... ... ... 227

(c) (d)

Figure 4.1  Examples of data interpolation and global optimization: (a) scattered dat
interpolation (curve fitting) (Bishop 2006) (C) 2006 Springer; (b) graphical model interpretc
tion of first-order regularization; (c) colorization using optimization (Levin, Lischinski, an
Weiss 2004 ) © 2004 ACM; (d) multi-image Photomontage formulated as an unordered lab
MRF (Agarwala, Dontcheva, Agrawala et al. 2004) (©) 2004 ACM.
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Scattered data interpolation / approximation

* Green: original (clean) curve

* Blue: noisy samples
* Red: fitted curve

* Interpolation or approximation?
e Underfitting or overfitting?

Richard Szeliski

CSE 576 - Interpolation and Optimization
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More formally

4.1 Scattered data interpolation

The goal of scattered data
function f(x) that passes

interpolation| is to produce a (usually continuous and smooth)

through|a set of data points d;, placed at locations x;, such that

f(xp) =dp. 4.1)

The related problem of scattered datalapproximation only requires the function to pass [near
the data points (Amidror 2002; Wendland 2004; Anjyo, Lewis, and Pighin 2014). This is
usually formulated using a penalty function such as

Ep = Z If(xk) — dk||2. (4.2)
k

with the squared norm in the above formula sometime replaced by a different norm or robust

function (Section 4.1.3). In statistics and |machine learning, the problem of predicting an

output function given a finite number of samples is called |regression [Section 5.1), the x

vectors are called the

inputs,

and the outputs y are called the |targets.| Figure 4.1a shows

an example of one-dimensional scattered data interpolation, while Figures 4.2 and 4.9 show

some two-dimensional examples.

Richard Szeliski
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Scattered data interpolation / approximation

* Green: original (clean) curve

* Blue: noisy samples

* Red: fitted curve
e Underfitting or overfitting? o

 What is it good for? e

Richard Szeliski CSE 576 - Interpolation and Optimization 64



CVPR’19 NTIRE workshop talk

[;‘”’ tation + Photography

[the mobile phone became a camera N

yman

:d Google AI

https://data.vision.ee.ethz. ch/cvl/ntlre19/speakers/Pevmaanlanfar Computatlon and Photographv pdf

Richard Szeliski CSE 576 - Interpolation and Optimization
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Modern Mobile Imaging:
Burst Photography

Exposure control

Align: Reliable Optical Flow — Scene is never stationary
Merge: Artifact-free Fusion — Alignment failures, occlusion, ...
Enhance: Denoise, Sharpen, Contrast, Dynamic Range

Richard Szeliski CSE 576 - Interpolation and Optimization 66



Classic Camera Image Processing Pipeline

Sensor with colorfilter array

Gain Control
A/D Converter
Possible LUT

White
Balance

{

“Enhance”

(CCD/CMOS)
T Color Space Noise
one « Transform + Reduction/
Reproduction Color Preferences Sharpening

Demosaic

{

JPEG
Compression

Richard Szeliski

“Merge”

67
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Demosaicing




Demosaicing .... Kills Details and Produces Artifacts

69



Instead

Replace demosaicing with multiple frames

70



Pixel shifting

71






How do you merge these samples
and fill in the missing data?

73



Merge: Nonlinear Kernel Regression

Continuous interpolation
Kernel functions

/

Measurements

> I -

74



How can we interpolate scattered data?

AX

>
>
I"
‘Qllll
POICI0E
ooy
e et
N~='F

(a) (b)

Figure 4.9 A simple surface interpolation problem: (a) nine data points of various height
scattered on a grid; (b) second-order, controlled-continuity, thin-plate spline interpolator,
with a tear along its left edge and a crease along its right (Szeliski 1989) (©) 1989 Springer.

Richard Szeliski CSE 576 - Interpolation and Optimization
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Triangulations and pyramids

(b)

Figure 4.2  Some simple scattered data interpolation and approximation algorithms: (a)
a Delaunay triangularion defined over a set of data point locations; (b) data structure and

intermediate results for the pull-push algorithm (Gortler, Grzeszczuk, Szeliski et al. 1996) (©)
1996 ACM.

Richard Szeliski CSE 576 - Interpolation and Optimization
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Underfitting and overfitting

Richard Szeliski

Figure 4.3  Polynomial curve fitting to the blue circles, which are noisy samples from the

green sine curve (Bishop 2006) (C) 2006 Springer. The four plots show the Oth order constant

function, the first order linear fit, the M = 3 cubic polynomial, and the 9th degree polynomial.

Notice how the first two curves exhibit underfitting, while the last curve exhibits overfitting,

o

i.e., excessive wiggle.

CSE 576 - Interpolation and Optimization
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Underfitting and overfitting

Richard Szeliski

Idealized Error Curves

Underfitting Overfitting

Error

—— validation error
—— training error

Figure 4.5  Fitting (training) and validation errors as a function of the amount of regu-
larization or smoothing (Glassner 2018) (©) 2018 Andrew Glassner. The less regularized
solutions on the right, while exhibiting lower fitting error, perform less well on the validation
data.

CSE 576 - Interpolation and Optimization
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Bias / variance tradeoff

Richard Szeliski

InA=26

OF

0 T 0 T
Figure 4.6  The more heavily regularized solution log A = 2.6 exhibits higher bias (devia-
tion from original curve) than the less heavily regularized version (log A\ = —2.4), which has
much higher variance (Bishop 2006) (©) 2006 Springer. The red curves on the right a M = 24

Gaussian basis fits to 25 randomly sampled points on the green curve. The red curve on the
right is their mean.

CSE 576 - Interpolation and Optimization
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Curve fitting

https://xkcd.com/2048/
© 2018 Randall Munroe

Richard Szeliski

CURVE-FITTING METHODS

AND THE. MESSAGES THEY SEND
UNEAR . | QUADRATIC H? .
5 o .
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‘ . . . . . 0’.
ﬂfﬁ . ':.. “ .
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L2 interpolation / approximation

4.1 Scattered data interpolation

The goal of scattered data interpolation is to produce a (usually continuous and smooth)

function f(x) that passes through a set of data points dj, placed at locations x;, such that
f(Xk) = dk (4-1) dl

The related problem of scattered data approximation only requires the function to pass near
the data points (Amidror 2002; Wendland 2004; Anjyo, Lewis, and Pighin 2014). This is
usually formulated using a|penalty function{such as

Ep =) |f(xk)—di|* (4.2)
k

with the squared norm in the above formula sometime replaced by a different norm or robust
function (Section 4.1.3). In statistics and machine learning, the problem of predicting an
output function given a finite number of samples is called regression (Section 5.1), the x
vectors are called the inputs, and the outputs y are called the targets. Figure 4.1a shows
an example of one-dimensional scattered data interpolation, while Figures 4.2 and 4.9 show
some two-dimensional examples.
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Robust fitting — dealing with outliers

This same idea can be applied to data terms such as (4.2), where instead of using a

quadratic penalty, we can use a robust loss function p(),

ER = /)(||I‘k| ), withry, = f(Xk) —dy., (4.15)

which gives lower weights to larger data fitting errors, which are more likely to be outlier
measurements. (The fitting error term ry, is called the residual error.)

Some examples of loss functions from (Barron 2019) are shown in Figure 4.8 along with
their derivatives. The regular quadratic quadratic (o« = 2) penalty gives full (linear) weight to
each error, whereas the o« = 1 loss gives equal weight to all larger residuals, i.e., it behaves

as an L, loss for large residuals, and Lo for small ones. Even larger values of a discount oz, a,c)

o

large errors (outliers) even more, although they result in optimization problems that are non-
convex, i.e., that can have multiple local minima. We will discuss techniques for finding good 4
inital guesses for such problems later on in Section 9.1.4.
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Controlled continuity surface fitting
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Figure 4.9 A simple surface interpolation problem: (a) nine data points of various height
scattered on a grid; (b) second-order, controlled-continuity, thin-plate spline interpolator,
with a tear along its left edge and a crease along its right (Szeliski 1989) (©) 1989 Springer.
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Variational methods

Richard Szeliski

(Here, we use subscripts to denote differentiation.) Such energy measures are examples of
functionals, which are operators that map functions to scalar values. They are also often called

variational methods| because they measure the variation (non-smoothness) in a function.

In two dimensions (e.g., for images, flow fields, or surfaces), the corresponding smooth-

ness functionals are

A= /f(;r,y) - fél(;l’..y)d;r dy = / |V £(z, y)||? dx dy (4.18)
and
Ey = /fé(l y) + Qf(;l?, y) + f(;r. y) dx dy, (4.19)

where the mixed 2 f_fy term is needed to make the measure rotationally invariant (Grimson
1983).
The first derivative norm is often called the [membrane| since interpolating a set of data

points using this measure results in a tent-like structure. (In fact, this formula is a small-
deflection approximation to the surface area, which is what soap bubbles minimize.) The

second-order norm is called the| thin-plate| spline, since it approximates the behavior of thin
plates (e.g., flexible steel) under small deformations. A blend of the two is called the thin-
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Controlled continuity splines
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To better model such functions, Terzopoulos (1986b) introduced controlled-continuity

splines, where each derivative term is multiplied by a local weighting function,

Ecc = /p(;lzy){[l —[r@ 2@, y) + f(x.y)]

+r (2, [ F2, (2, y) + Qf:?:y(I, y) + y2y (x,y)]} dx dy. (4.20)

T

Here, p(z,y) € [0, 1] controls the|continuity |of the surface and 7(x, y) € [0, 1] controls the
local|tension, i.e., how flat the surface wants to be. Figure 4.9 shows a simple example of
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Discrete energy minimization

S +1)

d (i.)) f(@+1,7+1)

c(@./)

$3(7,7)

| $x(7.7)

J@.j AGaW)

Fortunately, for both the first-order and second-order smoothness functionals, the judi-
cious selection of appropriate finite elements results in particularly simple discrete forms
(Terzopoulos 1983). The corresponding discrete smoothness energy functions become

Er =Y s, (i, j\f(i + 1.5) — f(i.5) { 9. j)?
ij (4.24)
Hsy G f g+ 1) = F(i.G) 1 gy0i. 5]

The data values g,(7,7) and g,(7,j) are|gradient data terms|(constraints) used by al-
gorithms, such as photometric stereo (Section 14.1.1), HDR tone mapping (Section 11.2.1)
(Fattal, Lischinski, and Werman 2002), Poisson blending (Section 9.4.4) (Pérez, Gangnet, and
Blake 2003), gradient-domain blending (Section 9.4.4) (Levin, Zomet, Peleg et al. 2004 ), and
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Interactive edge-preserving colorization

(c)

Figure 4.11 Colorization using optimization (Levin, Lischinski, and Weiss 2004) (©) 2004
ACM: (a) grayscale image some color scribbles overlaid; (b) resulting colorized image; (c)
original color image from which the grayscale image and the chrominance values for the
scribbles were derived. Original photograph by Rotem Weiss.
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Speeding up the solver

(b) (¢)

Figure 4.12  Speeding up the inhomogeneous least squares colorization solver using lo-
cally adapted hierarchical basis preconditiong (Szeliski 2006b) (C) 2006 ACM: (a) input gray
image with color strokes overlaid; (b) solution after 20 iterations of conjugate gradient; (c)

using 1 iteration of hierarchical basis function preconditioning; (d) using 1 iteration of lo-
cally adapted hierarchical basis functions.
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Hierarchical basis preconditioning

/1 \
coarse A /=4
y [=3
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Figure A.3  Multiresolution pyramid with half-octave (quincunx sampling (odd levels are
colored gray for easier visibility) (Szeliski 2006b) (C) 2006 ACM. Hierarchical basis function

control variables are shown as black dots.
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Robust regularization

S +1)

d (i,)) fG+1,7+1)

c(2.)) $y(1.)

Robust regularization fG.j sx(i.)) iGaW)

While regularization is most commonly formulated using quadratic (L2) norms i.e., the squared

derivatives in (4.16-4.19) and squared differences in (4.24—4.25), it can also be formulated

. . . . . . . T,q,cC
using the non-quadratic robust penalty functions first introduced in Section 4.1.3 and dis- 5 L )

cussed in more detail in Appendix B.3. For example, (4.24) can be generalized to

Eir =Y sa(i.jof £(i+1.5) = f(i.j))
i,j (4.29)
+ sy (i ] £ 0.5+ 1) = £, ).

1 A y

0
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Bilateral solver

uating weighted errors between neighboring pixels. As we saw previously in our discussion
of bilateral filtering in Section 3.3.2, we can often get better results by looking at a larger

spatial neighborhood and combining pixels with similar colors or grayscale values. |To ex-

tend this idea to a variational (energy minimization) setting, Barron and Poole (2016) propose
replacing the usual first-order nearest-neighbor smoothness penalty (4.24) with a bilaterally
weighted version

Ep =) >kl Wi g, k DLf (k. ) — £, )2 (431)

i,J

where
w(z, j, k1)
Yo nwlij,mn)’

?

w(i, j, k1) =

(4.32)

is the bistochastized (normalized) version of the bilateral weight function given in (3.37),
which may depend on an input guide image, but not on the estimated values of f.
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Pw
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Figure 3.20 Bilateral filtering (Durand and Dorsey 2002) (©) 2002 ACM: (a) noisy step
edge input: (b) domain filter (Gaussian): (c) range filter (similarity to center pixel value); (d)
bilateral filter: (e) filtered step edge output: (f) 3D distance between pixels.

Depth from Motion for Smartphone AR

JULIEN VALENTIN, ADARSH KOWDLE, JONATHAN T. BARRON, NEAL WADHWA, MAX DZITSIUK,
MICHAEL SCHOENBERG, VIVEK VERMA, AMBRUS CSASZAR, ERIC TURNER, IVAN DRYANOVSKI,
JOAO AFONSO, JOSE PASCOAL, KONSTANTINE TSOTSOS, MIRA LEUNG, MIRKO SCHMIDT, ONUR
GULERYUZ, SAMEH KHAMIS, VLADIMIR TANKOVITCH, SEAN FANELLO, SHAHRAM IZADI, and CHR
RHEMANN, Google Inc.
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Fig. 1. AR occlusions. Estimating the depth of the scene is crucial to render virtual objects such that they realistically blend into the real context. We provide
the first system capable of pravldlng dense, Iow Ialency depth maps at 30Hz on a single mobile CPU core, using only the standard color camera found on most

| (future lecture)?
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Interpolation and optimization

 Markov Random Fields
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Markov Random Fields

According to Bayes’ Rule (Appendix B.4), the posterior distribution for a given set of

measurements y, p(y|x), combined with a prior p(x) over the unknowns x, is given by

Py[x)p(x) (4.33)

p(xly) = oY)

where p(y) = fx p(y|x)p(x) is a normalizing constant used to make the p(x|y) distribution
proper (integrate to 1). Taking the negative logarithm of both sides of (4.33), we get

—logp(x|y) = —log p(y|x) — log p(x) + C, (4.34)

which is the negative posterior log likelihood.

To find the most likely (maximum a posteriori or MAP) solution x given some measure-
ments y, we simply minimize this negative log likelihood, which can also be thought of as an
energy,

E(x,y) = Ep(x,y) + Ep(x). (4.35)

(We drop the constant C' because its value does not matter during energy minimization.)
The first term Ep(x,y) is the data energy or data penalty; it measures the negative log
likelihood that the data were observed given the unknown state x. The second term E'p(x) is

the prior energy: it plays a role analogous to the smoothness energy in regularization. Note
Richard Szeliski CSE 576 - Interpolation and Optimization
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Why Bayesian (probabilistic) modeling?

* Merge uncertain measurement

in an optimal way

e Estimate the uncertainty in
the final answer

 Build in (quantitative)
prior assumptions

Richard Szeliski

Appendix B

Bayesian modeling and inference

B.1

B.2
B.3
B.4
B.5

B.6

Estimation theory . . . . . . . . .. .. L 877
B.1.1 Likelihood for multivariate Gaussian noise . . . . . . . .. ... .. 877
Maximum likelihood estimation and least squares . . . . . . .. .. .. ... 879
Robust statistics . . . . . . . . . .. L 880
Prior models and Bayesian inference . . . . . . . .. .. .. ... ... 883
Markov random fields . . . . . . .. ..o oo 884
B.5.1 Gradient descent and simulated annealing . . . . .. ... ... ... 886
B.5.2 Dynamic programming . . . . . . .. .. ..o 888
B.5.3 Belief propagation . . . . . .. ... ... oL 890
B.5.4 Graphcuts . .. .. ... 893
B.5.5 Linear programming . . . . . . . . . . .. ... 896
Uncertainty estimation (error analysis) . . . . . . . . .. ... ... ... .. 897
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Example: merge GPS readings

* Measurement 1: 10.1 £ 0.1667 (1/6) Gaussian noise
* Measurement 2: 10.2 £ 0.1250 (1/8) Gaussian noise
* What is the optimal combined measurement?

Exercise for next lecture
(send me your answer on Slack)

10.0 10.1 10.2 10.3 10.4
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Why a Bayesian formulation?

* Wider range of probability distributions

Global Opti-

e Learn distributions from data

* Wider range of inference algorithms
[Kappes, Andres, et al., [JCV 2015]
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Energy minimization

(a) initial labeling (b) standard move (¢) a-3-swap (d) a-expansion

Figure 4.15  Multi-level graph optimization from (Bovkov, Veksler, and Zabih 2001) (C)
2001 IEEE: (a) initial problem configuration; (b) the standard move only changes one pixel;
(c) the a-3-swap optimally exchanges all o and [(3-labeled pixels; (d) the c-expansion move
optimally selects among current pixel values and the « label.
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Digital Photomontage

Figure 4.17  An unordered label MRF (Agarwala, Dontcheva, Agrawala et al. 2004) (C)
2004 ACM: Strokes in each of the source images on the left are used as constraints on an
MRF optimization, which is solved using graph cuts. The resulting multi-valued label field is
shown as a color overlay in the middle image, and the final composite is shown on the right.
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Markov Random Fields

According to Bayes’ Rule (Appendix B.4), the posterior distribution for a given set of

measurements y, p(y|x), combined with a prior p(x) over the unknowns x, is given by

Py[x)p(x) (4.33)

p(xly) = oY)

where p(y) = fx p(y|x)p(x) is a normalizing constant used to make the p(x|y) distribution
proper (integrate to 1). Taking the negative logarithm of both sides of (4.33), we get

—logp(x|y) = —log p(y|x) — log p(x) + C, (4.34)

which is the negative posterior log likelihood.

To find the most likely (maximum a posteriori or MAP) solution x given some measure-
ments y, we simply minimize this negative log likelihood, which can also be thought of as an
energy,

Ex,y) = Ep(x,y) + Ep(X). (4.35)

(We drop the constant C' because its value does not matter during energy minimization.)
The first term Ep(x,y) is the data energy or data penalty; it measures the negative log
likelihood that the data were observed given the unknown state x. The second term E'p(x) is

the prior energy: it plays a role analogous to the smoothness energy in regularization. Note
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Conditional Random Fields

* Interaction potentials depend on guide image 4. fGHL+D)

(sound familiar?) G.1)

Since the smoothness term now depends on the data, Bayes™ Rule (4.44) no longer ap- = —

plies. Instead, we use a direct model for the posterior distribution p(x|y), whose negative log
likelithood can be written as

E(x|ly) = Ep(x,y) + Es(x.y)

= Vo(@p.y)+ Y Viglwp 24.¥). (4.45)
P (P.a)EN

using the notation introduced in (4.43). The resulting probability distribution is called a con-
ditional random field (CRF) and was first introduced to the computer vision field by Kumar
and Hebert (2003), based on earlier work in text modeling by Lafferty, McCallum, and Pereira
(2001).

Figure 4.18 shows a graphical model where the smoothness terms depend on the data
values. In this particular model, each smoothness term depends only on its adjacent pair of

data values, i.e., terms are of the form|V}, ,(z,. x4, yp. y4)|in (4.45).
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Dense CRF [Krahenbiihl and Koltun 2011]

* Use a wide color-based support region (like bilateral solver)
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Image (b) Unary classifiers (c) Robust P™ CRF (d) Fully connected CRF, (e) Fully connected CRF,
MCMC inference, 36 hrs our approach, 0.2 seconds
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Wrapping up

* Interpolation
* Pyramids

* Blending

 Resampling (rotations, etc.)

* Data Fitting

e Regularization and variational techniques
* Markov Random Fields
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