Convolutional Neural Networks

Computer Vision (UW EE/CSE 576)

Richard Szeliski
Facebook \& UW
Lecture 8 - Apr 23, 2020

Class calendar

Date	Topic	Slides	Reading	Homework
April 9	Filters and convolutions	Google Slides	Szeliski, Chapter 3	HW1 due, HW2 assigned
April 14	Interpolation and Optimization	pdf, pptx	Szeliski, Chapter 4	
April 16	Machine Learning	pdf, pptx	Szeliski, Chapter 5.1-5.2	
April 21	Deep Neural Networks		Szeliski, Chapter 5.3	
April 23	Convolutional Neural Networks		Szeliski, Chapter 5.4	HW2 due, HW3 assigned
April 28	Network Architectures		Szeliski, Chapter 5.4-5.5	
April 30	Object Detection		Szeliski, Chapter 6.3	
May 5	Detection and Instance Segmentation		Szeliski, Chapter 6.4	

References

https://d2l.ai/

Chapter 5

Readings

Deep Learning

5.3 Deep neural networks 272
5.3.1 Weights and layers 274
5.3.2 Activation functions 276
5.3.3 Regularization and normalization 278
5.3.4 Loss functions 283
5.3.5 Backpropagation 285
5.3.6 Training and optimization 289
5.4 Convolutional neural networks 291
5.4.1 Pooling and unpooling 295
5.4.2 Application: Digit classification 297
5.4.3 Model zoos 297
5.4.4 Visualizing weights and activations 303
5.4.5 Adversarial examples 306
5.4.6 Pre-training and fine-tuning networks 306
5.5 More complex networks 309

Convolutional neural networks++

- Training and optimization
- More regularization (dropout, ...)
- Convolutional neural networks

- Pooling
- Batch normalization

As before, I'm borrowing slides from

EECS 498-007 / 598-005 Deep Learning for Computer Vision	
Course Description Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification and object detection. Recent developments in neural network approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of neural-network based deep learning methods for computer vision. During this course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. We will cover learning algorithms, neural network architectures, and practical engineering tricks for training and finetuning networks for visual recognition tasks.	
Instructor	Graduate Student Instructors

Lecture 13	Thursday February 20	Intro to Machine Learning	[slides (pdf)] [slides (pptx)]	Lecture 17	Tuesday March 17	Backpropagation Computational Graphs Backpropagation Matrix multiplication example	[video (from EECS 498/598)]
		Image warping / blending					[slides (from EECS 498/598)]
		Supervised vs Unsupervised learning					[231n Backpropagation]
		Train / Test splits					[Backprop for Matrix Multiply]
		Linear Regression					[Olah on Backprop]
		Regularization					[Nielsen on Backprop]
Lecture 14	Tuesday February 25	Linear Models	[slides (pdf)] [slides (pptx)] [CS231n Linear Classification]	Lecture 18	Thursday March 19	Convolutional Networks	[video (from EECS 498/598)]
		Cross-Validation				Convolution	[slides (from EECS 498/598)]
		K-Nearest Neighbors				Pooling	[231n ConvNets]
		SVM loss				Batch Normalization	[Goodfellow, Chapter 9]
		Cross-Entropy loss		Lecture 19	Tuesday March 24		
Lecture 15	Thursday February 27	Optimization	[slides (pdf)]			CNN Architectures	[slides (from EECS 498/598)]
		Stochastic Gradient Descent	[slides (pptx)]			AlexNet, VGG, ResNet	[AlexNet paper]
		SGD + Momentum	[CS231n Optimization]			Size vs Accuracy	[VGG paper]
						Neural Architecture Search	[GoogLeNet paper]
Lecture 16	Tuesday March 10	Neural Networks	[slides (pdf)] [slides (pptx)] [CS231n Neural Networks]				[ResNet paper]
		Overfitting / Underfitting		Lecture 20	Thursday March 26	Training Neural Networks I	[video (from EECS 498/598)] [slides (from EECS 498/598)] [231n Training 1]
		Bias / Variance tradeoff				Activation Functions	
		Fully-connected neural networks				Data preprocessing	
		Biological neurons				Weight initialization	
						Data Augmentation	
						Regularization	
				Lecture 21	Tuesday March 31	Training Neural Networks II	
						Learning rate schedules	[video (EECS 498/598)]
						Hyperparameter optimization	[slides (from EECS 498/598)]
						Model ensembles	[231n Training II]
						Transfer learning	[Karpathy "Recipe for Training"]
						Large-batch training	

Deep Learning for Computer Vision

 Fall 2019
Lecture 4:
 Optimization

Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Q: How do we find the best W ?

$$
s=f(x ; W)=W x
$$

Linear classifier

$$
\begin{aligned}
& L_{i}=-\log \left(\frac{e^{s y_{i}}}{\sum_{j} e^{s_{j}}}\right)^{\text {Softmax }} \\
& L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) \\
& L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+R(W) \text { Full loss }
\end{aligned}
$$

Follow the slope

In 1-dimension, the derivative of a function gives the slope:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the gradient is the vector of (partial derivatives) along each dimension

The slope in any direction is the dot product of the direction with the gradient The direction of steepest descent is the negative gradient

Loss is a function of W: Analytic Gradient

$L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2}$
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
$s=f(x ; W)=W x$
want $\nabla_{W} L$

Use calculus to compute an analytic gradient

This image is in the public domain

This image is in the public domain

Computing Gradients

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

What's the difference?
Which one is better?

Computing Gradients

Numeric gradient: approximate, slow, easy to write

- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

```
def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-7):
    " " "
    sample a few random elements and only return numerical
    in this dimensions.
    " " "
```


Gradient Descent

Iteratively step in the direction of the negative gradient
(direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
\[
\begin{array}{cc}
\mathbf{w} \leftarrow \mathbf{w}-\alpha \mathbf{g} \quad \text { or } \\
\mathbf{w}_{t+i}=\mathbf{w}_{t}-\alpha_{t} \mathbf{g}_{t}
\end{array}
\]
w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
    dw = compute_gradient(loss_fn, data, w)
    w -= learning_rate * dw
```


Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate
negative gradient

direction original W

Batch Gradient Descent

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

[Minibatch] Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda R(W) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)+\lambda \nabla_{W} R(W)
\end{aligned}
$$

Full sum expensive when N is large!

Approximate sum using a minibatch of examples 32 / 64 / 128 common
\# Stochastic gradient descent

Hyperparameters:
w = initialize_weights()

- Weight initialization

$$
\text { for } t \text { in range(num_steps): }
$$

minibatch = sample_data(data, batch_size)

- Number of steps
dw = compute_gradient(loss_fn, minibatch, w)
- Learning rate

$$
\text { w -= learning_rate } * d w
$$

- Batch size
- Data sampling

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(x, y, W)]+\lambda R(W) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} L\left(x_{i}, y_{i}, W\right)+\lambda R(W)
\end{aligned}
$$

Think of loss as an expectation over the full data distribution $p_{\text {data }}$

Approximate expectation via sampling

Stochastic Gradient Descent (SGD)

$$
\begin{aligned}
L(W) & =\mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(x, y, W)]+\lambda R(W) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} L\left(x_{i}, y_{i}, W\right)+\lambda R(W)
\end{aligned}
$$

Think of loss as an expectation over the full data distribution $p_{\text {data }}$

Approximate
expectation via sampling

$$
\left.\nabla_{W} L(W)=\nabla_{W} \mathbb{E}_{(x, y) \sim p_{\text {data }}}[L(x, y, W)]+\lambda \nabla_{W} R(W)\right)
$$

$$
\approx \sum_{i=1}^{N} \nabla_{W} L_{W}\left(x_{i}, y_{i}, W\right)+\nabla_{W} R(W)
$$

Recall: Reverse-Mode Automatic Differentiation

Matrix multiplication is associative: we can compute products in any order Computing products right-to-left avoids matrix-matrix products; only needs matrix-vector

$$
\begin{aligned}
\underset{\text { rule }}{\text { Chain }} \frac{\partial L}{\partial x_{0}}= & \left(\frac{\partial x_{1}}{\partial x_{0}}\right)\left(\frac{\partial x_{2}}{\partial x_{1}}\right)\left(\frac{\partial x_{3}}{\partial x_{2}}\right)\left(\frac{\partial L}{\partial x_{3}}\right) \\
& \mathrm{D}_{0} \times \mathrm{D}_{1} \quad \mathrm{D}_{1} \times \mathrm{D}_{2} \quad \mathrm{D}_{2} \times \mathrm{D}_{3}
\end{aligned}
$$

Mini-batch evaluation with matrices (HW3)

- DNNs are described as passing vectors between layers
- Why not pass all samples in a mini-batch as a matrix?
- What used to be column vectors are now rows
- Need to adjust weight-vector multiplies

$$
s=W x
$$

becomes

$$
\boldsymbol{S}=\boldsymbol{X} \boldsymbol{W}^{\top}
$$

- Need to adjust gradients (Jacobians) as well

Homework 3: Neural Networks in C++

What you'll be implementing

- Quick overview by Keunhong Park
We will be training a fully-connected neural network for this assignment.
- src/activation.cpp : you will implement the forward and backward passes for several activation functions.
- src/classifier. cpp : you will implement gradient computation and parameter updates using algorithms we discussed in class.

You'll be training on two datasets, one is MNIST which is a digit-recognition dataset. The other is a simple visual recognition dataset called CIFAR.

1. Implementing Neural Networks
1.1 Activation Functions

An important part of machine learning, be it linear classifiers or neural networks, is the activation function you use
We will be implementing the following activation functions:

- Linear: $f(x)=x$
- Logistic: $f(x)=1 /(1+\exp (-x))$
- tanh: $f(x)=\tanh (x)$
- ReLU: $f(x)=\max (0, x)$
- Leaky ReLU: $f(x)=0.01^{*} x$ if $x<0$ else x
- Softmax: https://en.wikipedia.ora/wiki/Softmax_function

Keunhong Park (TA) c²
Ph.D Student
View full profile

Interactive Web demo

Problems with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value of the Hessian matrix is large

Problems with SGD

What if the loss function has a local minimum or saddle point?

Problems with SGD

What if the loss function has a local minimum or saddle point?

Zero gradient, gradient descent gets stuck

Problems with SGD

Our gradients come from minibatches so they can be noisy!

$$
\begin{aligned}
L(W) & =\frac{1}{N} \sum_{i=1}^{N} L_{i}\left(x_{i}, y_{i}, W\right) \\
\nabla_{W} L(W) & =\frac{1}{N} \sum_{i=1}^{N} \nabla_{W} L_{i}\left(x_{i}, y_{i}, W\right)
\end{aligned}
$$

SGD

SGD

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

for t in range(num_steps): $\mathrm{dw}=$ compute_gradient(w) w -= learning_rate * dw

SGD + Momentum

SGD

$$
x_{t+1}=x_{t}-\alpha \nabla f\left(x_{t}\right)
$$

for t in range(num_steps): dw = compute_gradient(w) w -= learning_rate * dw

SGD+Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla f\left(x_{t}\right) \\
& x_{t+1}=x_{t}-\alpha v_{t+1}
\end{aligned}
$$

$$
\begin{aligned}
& v=0 \\
& \text { for } t \text { in range(num_steps): } \\
& d w=\text { compute_gradient }(w) \\
& v=\text { rho } * v+d w \\
& w-=\text { learning_rate } * v
\end{aligned}
$$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

SGD + Momentum

SGD+Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla f\left(x_{t}\right) \\
& x_{t+1}=x_{t}+v_{t+1}
\end{aligned}
$$

$$
\begin{aligned}
& v=0 \\
& \text { for } t \text { in range(num_steps): } \\
& d w=\text { compute_gradient }(w) \\
& v=r h o * v-\text { learning_rate } * d w \\
& w+=v
\end{aligned}
$$

SGD+Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}+\nabla f\left(x_{t}\right) \\
& x_{t+1}=x_{t}-\alpha v_{t+1}
\end{aligned}
$$

You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

SGD + Momentum

Local Minima Saddle points

Poor Conditioning

SGD + Momentum

Momentum update:

Gradient

Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

Momentum update:

Gradient
Combine gradient at current point with velocity to get step used to update weights

Nesterov Momentum

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right) \\
& x_{t+1}=x_{t}+v_{t+1}
\end{aligned}
$$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
& v_{t+1}=\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right) \\
& x_{t+1}=x_{t}+v_{t+1}
\end{aligned}
$$

Annoying, usually we want update in terms of $x_{t}, \nabla f\left(x_{t}\right)$

"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Nesterov Momentum

$$
\begin{aligned}
v_{t+1} & =\rho v_{t}-\alpha \nabla f\left(x_{t}+\rho v_{t}\right) \\
x_{t+1} & =x_{t}+v_{t+1}
\end{aligned}
$$

Change of variables $\tilde{x}_{t}=x_{t}+\rho v_{t}$ and rearrange:

$$
\begin{aligned}
v_{t+1} & =\rho v_{t}-\alpha \nabla f\left(\tilde{x}_{t}\right) \\
\tilde{x}_{t+1} & =\tilde{x}_{t}-\rho v_{t}+(1+\rho) v_{t+1} \\
& =\tilde{x}_{t}+v_{t+1}+\rho\left(v_{t+1}-v_{t}\right)
\end{aligned}
$$

Annoying, usually we want update in terms of $x_{t}, \nabla f\left(x_{t}\right)$
$v=0$
for t in range(num_steps):
dw = compute_gradient(w)
old_v = v
v = rho * v - learning_rate * dw
w -= rho * old_v - (1 + rho) * v

Nesterov Momentum

—SGD

SGD+Momentum

Nesterov

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension
"Per-parameter learning rates" or "adaptive learning rates"

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


Q: What happens with AdaGrad?

AdaGrad

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
grad_squared += dw * dw
w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```


Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

RMSProp: "Leaky Adagrad"

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    AdaGrad
    grad_squared += dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
    \downarrow
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
    RMSProp
```


RMSProp

—SGD

SGD+Momentum

RMSProp

Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
```


Adam (almost): RMSProp + Momentum

```
moment1 = 0
moment2 = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    w -= learning_rate * moment1/ (moment2.sqrt() + 1e-7)
\[
v=0
\]
for t in range(num_steps):
            dw = compute_gradient(w)
                v = rho * v + dw
w -= learning_rate * v
```


Adam (almost): RMSProp + Momentum

$$
\begin{aligned}
& \text { moment1 }=0 \\
& \text { moment2 }=0
\end{aligned}
$$

Adam

$$
\text { for } t \text { in range(num_steps): }
$$

$$
\text { dw = compute_gradient }(w)
$$

$$
\text { moment1 }=\text { beta1 } * \text { moment1 }+(1-\operatorname{beta1}) * \mathrm{dw}
$$

$$
\text { moment2 }=\text { beta2 } * \text { moment } 2+(1-\mathrm{beta} 2) * \mathrm{dw} * \mathrm{dw}
$$

```
w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
```

Momentum
AdaGrad / RMSProp

```
grad_squared = 0
for t in range(num_steps):
    dw = compute_gradient(w)
    grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dw * dw
    w -= learning_rate * dw / (grad_squared.sqrt() + 1e-7)
```

 RMSProp

Adam: Very Common in Practice!

for input to the CNN; each colored pixel in the image yields a 7D one-hot vector. Following common practice, the network is trained end-to-end using stochastic gradient descent with the Adam optimizer [22]. We anneal the learning rate to 0 using a half cosine schedule without restarts [28].

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019

We train all models using Adam [23] with learning rate 10^{-4} and batch size 32 for 1 million iterations; training takes about 3 days on a single Tesla P100. For each minibatch we first update f, then update $D_{i m g}$ and $D_{o b j}$

Johnson, Gupta, and Fei-Fei, CVPR 2018
ganized into three residual blocks. We train for 25 epochs using Adam [27] with learning rate 10^{-4} and 32 images per batch on 8 Tesla V100 GPUs. We set the cubify thresh-

Gkioxari, Malik, and Johnson, ICCV 2019
sampled with each bit drawn uniformly at random. For gradient descent, we use Adam [29] with a learning rate of 10^{-3} and default hyperparameters. All models are trained with batch size 12. Models are trained for 200 epochs, or 400 epochs if being trained on multiple noise layers.

Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

16 dimensional vectors. We iteratively train the Generator and Discriminator with a batch size of 64 for 200 epochs using Adam [22] with an initial learning rate of 0.001 .

Gupta, Johnson, et al, CVPR 2018

Adam with beta1 = 0.9,
beta2 $=0.999$, and learning_rate $=1 e-3,5 e-4,1 e-4$ is a great starting point for many models!

Adam

Optimization Algorithm Comparison

Algorithm	Tracks first moments (Momentum)	Tracks second moments (Adaptive learning rates)	Leaky second moments	Bias correction for moment estimates
SGD	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
SGD+Momentum	\checkmark	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
Nesterov	\checkmark	\boldsymbol{x}	\boldsymbol{x}	\boldsymbol{x}
AdaGrad	\boldsymbol{x}	\checkmark	\boldsymbol{x}	\boldsymbol{x}
RMSProp	\boldsymbol{x}	\checkmark	\checkmark	\boldsymbol{x}
Adam	\sqrt{l}	\checkmark	\checkmark	$\sqrt{ }$

In practice:

- Adam is a good default choice in many cases SGD+Momentum can outperform Adam but may require more tuning
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

Deep Learning for Computer Vision

Lecture 10:
 Training Neural Networks (Part 1)

Overview

1. One time setup

Activation functions, data preprocessing, weight initialization, regularization
2. Training dynamics

Learning rate schedules; large-batch training;
hyperparameter optimization
3. After training

Model ensembles, transfer learning

Snapshot: Data Preprocessing

Snapshot: Weight Initialization

```
dims = [4096] * 7 "Xavier" initialization:
hs = [] std = 1/sqrt(Din)
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
```

```
W = np.random.randn(Din, Dout) / np.sqrt(Din)
```

W = np.random.randn(Din, Dout) / np.sqrt(Din)

```
W = np.random.randn(Din, Dout) / np.sqrt(Din)
        x = np.tanh(x.dot(W))
        x = np.tanh(x.dot(W))
        x = np.tanh(x.dot(W))
        hs.append(x)
        hs.append(x)
        hs.append(x)
for Din, Dout in zip(dims[:-1], dims[1:]):
```

Layer 1 mean $=-0.00$ std=0.63

Layer 2 mean $=-0.00$ std=0.49

Layer 3 mean $=0.00$ std=0.41

Layer 4
mean $=0.00$ std $=0.36$

"Just right": Activations are nicely scaled for all layers!

Snapshot: Data Augmentation

Data Augmentation: Random Crops and Scales

Training: sample random crops / scales ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side $=\mathrm{L}$
3. Sample random 224×224 patch

Regularization

Cutout

Training: Add randomness
Testing: Marginalize out randomness

Examples:

Batch Normalization Data Augmentation
Fractional pooling

(Old style) regularization: Add term to the loss

$$
L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)+\lambda R(W)
$$

In common use:

L2 regularization
L1 regularization
Elastic net (L1 + L2)
$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2} \quad$ (Weight decay)
$R(W)=\sum_{k} \sum_{l}\left|W_{k, l}\right|$
$R(W)=\sum_{k} \sum_{l} \beta W_{k, l}^{2}+\left|W_{k, l}\right|$

Regularization: Dropout

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common

Regularization: Dropout

Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model
An FC layer with 4096 units has $24096 \sim 10^{1233}$ possible masks!
Only ~ 10^{82} atoms in the universe...

Dropout: Test Time

```
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
    H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
    out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time $=$ expected output at training time

More common: "Inverted dropout"

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
    # forward pass for example 3-layer neural network
    H1 = np.maximum(0, np.dot(W1, X) + b1)
    U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
    H1 *= U1 # drop!
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
    H2 *= U2 # drop!
out = np.dot(W3, H2) + b3
    # backward pass: compute gradients... (not shown)
    # perform parameter update... (not shown)
```

Drop and scale during training

```
                                    test time is unchanged!
def predict(X):
    # ensembled forward pass
    H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
    H2 = np.maximum(0, np.dot(W2, H1) + b2)
    out = np.dot(W3, H2) + b3
```


Deep Learning for Computer Vision

 Fall 2019
Learning Rate Schedules

SGD, SGD+Momentum, Adagrad, RMSProp, Adam

 all have learning rate as a hyperparameter.

Q: Which one of these learning rates is best to use?

A: All of them! Start with large learning rate and decay over time

How long to train? Early Stopping

Stop training the model when accuracy on the validation set decreases Or train for a long time, but always keep track of the model snapshot that worked best on val. Always a good idea to do this!

Model Ensembles

1. Train multiple independent models
2. At test time average their results
(Take average of predicted probability distributions, then choose argmax)

Enjoy 2\% extra performance

Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple snapshots of a single model during training!

Cyclic learning rate schedules can make this work even better!

Convolutional neural networks++

- Training and optimization
- More regularization (dropout, ...)
- Convolutional neural networks

- Pooling
- Batch normalization

Deep Learning for Computer Vision

Lecture 7:
 Convolutional Networks

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

Stretch pixels into column

Input image

56
Problem: So far our classifiers don't respect the spatial structure of images!
$(2,2)$

Problem: So far our classifiers don't respect the spatial structure of images!	231
	24
	2

$$
f=W_{2} \max \left(0, W_{1} x\right)
$$

Stretch pixels into column

Components of a Fully-Connected Network

Fully-Connected Layers

Activation Function

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Activation Function

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers
Pooling Layers

Activation Function

Normalization

Fully-Connected Layer

$32 \times 32 \times 3$ image -> stretch to 3072×1

Fully-Connected Layer

$32 \times 32 \times 3$ image -> stretch to 3072×1

Input \longrightarrow| 10 $\times 3072$ |
| :---: |
| weights |

Convolution Layer

$3 \times 32 \times 32$ image: preserve spatial structure

Convolution Layer

$3 \times 32 \times 32$ image

$3 x 5 x 5$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

$3 \times 32 \times 32$ image

Convolution Layer

$3 \times 32 \times 32$ image

1 number:

the result of taking a dot product between the filter and a small $3 \times 5 \times 5$ chunk of the image
(i.e. $3 * 5^{*} 5=75$-dimensional dot product + bias)
$w^{T} x+b$

Convolution Layer

$3 \times 32 \times 32$ image

convolve (slide) over all spatial locations

Convolution Layer

$3 \times 32 \times 32$ image

Consider repeating with a second (green) filter:
two $1 \times 28 \times 28$
activation map

Convolution Layer

6 activation maps, each $1 \times 28 \times 28$
$3 \times 32 \times 32$ image
Consider 6 filters,

Stack activations to get a $6 \times 28 \times 28$ output image!

Convolution Layer

$3 \times 32 \times 32$ image

Also 6-dim bias vector:

6 activation maps, each $1 \times 28 \times 28$

Stack activations to get a $6 \times 28 \times 28$ output image!

Convolution Layer

Also 6-dim bias vector:
28×28 grid, at each point a 6-dim vector
$3 \times 32 \times 32$ image

Stack activations to get a $6 \times 28 \times 28$ output image!

Convolution Layer
$\mathrm{N} \times \mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W}$
Batch of images

Also $\mathrm{C}_{\text {out }}$-dim bias vector:

Convolution

Layer

$\mathrm{N} \times \mathrm{C}_{\text {out }} \times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ Batch of outputs

Stacking Convolutions

Stacking Convolutions

Q: What happens if we stack (Recall $y=W_{2} W_{1} x$ is two convolution layers?

A: We get another convolution!

3
Input:
$\mathrm{N} \times 3 \times 32 \times 32$
F

First hidden layer:
$N \times 6 \times 28 \times 28$
 Q: How to fix this?

Stacking Convolutions

Q: What happens if we stack (Recall $y=W_{2} W_{1} x$ is two convolution layers?

Input:
$\mathrm{N} \times 3 \times 32 \times 32$

3
6

First hidden layer:
$N \times 6 \times 28 \times 28$

A: We get another convolution!

What do convolutional filters learn?

What do convolutional filters learn?

Linear classifier: One template per class

Input:
$\mathrm{N} \times 3 \times 32 \times 32$

First hidden layer:
$N \times 6 \times 28 \times 28$

What do convolutional filters learn?

MLP: Bank of whole-image templates

What do convolutional filters learn?

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each $3 \times 11 \times 11$

A closer look at spatial dimensions

Input:
$\mathrm{N} \times 3 \times 32 \times 32$

First hidden layer:
N x $6 \times 28 \times 28$

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

A closer look at spatial dimensions

Input: 7x7
Filter: 3×3

A closer look at spatial dimensions

Input: 7x7
Filter: 3x3

A closer look at spatial dimensions

Input: 7x7
 Filter: 3x3
 Output: 5x5

A closer look at spatial dimensions

	7					
7						

Input: 7x7
 Filter: 3x3
 Output: 5x5

In general: Problem: Feature Input: W maps "shrink"
Filter: K with each layer!

Output: W - K + 1

A closer look at spatial dimensions

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7
Filter: 3×3
Output: 5x5
In general: Problem: Feature Input: W maps "shrink"
Filter: K with each layer!

Output: W - K + 1

Solution: padding
 Add zeros around the input

A closer look at spatial dimensions

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7
Filter: 3x3
Output: 5x5
In general: Very common:
Input: W
Filter: K Set $P=(K-1) / 2$ to make output have same size as input!
Padding: P
Output: W-K + $1+2 \mathrm{P}$

Receptive Fields

For convolution with kernel size K, each element in the output depends on a K x K receptive field in the input

Input

Output

Receptive Fields

Each successive convolution adds $\mathrm{K}-1$ to the receptive field size With L layers the receptive field size is $1+L^{*}(\mathrm{~K}-1)$

Input

Be careful - "receptive field in the input" vs "receptive field in the previous layer" Hopefully clear from context!

Receptive Fields

Each successive convolution adds $\mathrm{K}-1$ to the receptive field size With L layers the receptive field size is $1+L^{*}(K-1)$

Input

Problem: For large images we need many layers

Output for each output to "see" the whole image image

Receptive Fields

Each successive convolution adds $\mathrm{K}-1$ to the receptive field size With L layers the receptive field size is $1+L^{*}(K-1)$

Input

Problem: For large images we need many layers

Output for each output to "see" the whole image image

Solution: Downsample inside the network

Strided Convolution

Input: 7x7

Filter: 3×3
Stride: 2

Strided Convolution

Input: 7x7

Filter: 3×3
Stride: 2

Strided Convolution

Input: 7x7
Filter: 3×3

Output: 3x3

Stride: 2

Strided Convolution

Input: 7x7
Filter: 3×3
Output: 3x3
Stride: 2
In general:
Input: W
Filter: K
Padding: P
Stride: S
Output: $(W-K+2 P) / S+1$

Convolution Example

Input volume: $3 \times 32 \times 32$ 105×5 filters with stride 1, pad 2

Output volume size: ?

Convolution Example

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1, pad 2

Output volume size:
$(32+2 * 2-5) / 1+1=32$ spatially, so
$10 \times 32 \times 32$

Convolution Example

Input volume: $3 \times 32 \times 32$ 105×5 filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: ?

Input volume: $3 \times 32 \times 32$
105×5 filters with stride 1 , pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Parameters per filter: $3 * 5 * 5+1$ (for bias) $=76$
10 filters, so total is 10 * $76=760$

Convolution Example

Input volume: $3 \times 32 \times 32$ 105×5 filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Number of multiply-add operations: ?

Convolution Example

Input volume: $3 \times 32 \times 32$ 105×5 filters with stride 1, pad 2

Output volume size: $10 \times 32 \times 32$
Number of learnable parameters: 760
Number of multiply-add operations: 768,000
$10 * 32 * 32=10,240$ outputs; each output is the inner product of two $3 \times 5 \times 5$ tensors (75 elems); total $=75 * 10240=768 \mathrm{~K}$

Example: 1×1 Convolution

Example: 1×1 Convolution

Stacking 1×1 conv layers gives MLP operating on each input position

Convolution Summary

Input: $\mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W}$
Hyperparameters:

- Kernel size: $\mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{W}}$
- Number filters: $\mathrm{C}_{\text {out }}$
- Padding: P
- Stride: S

Weight matrix: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{w}}$ giving $\mathrm{C}_{\text {out }}$ filters of size $\mathrm{C}_{\text {in }} \times \mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{w}}$
Bias vector: $\mathrm{C}_{\text {out }}$
Output size: $\mathrm{C}_{\text {out }} \times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ where:

- $H^{\prime}=(H-K+2 P) / S+1$
- $\mathrm{W}^{\prime}=(\mathrm{W}-\mathrm{K}+2 \mathrm{P}) / \mathrm{S}+1$

Convolution Summary

Input: $\mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W}$

Hyperparameters:

- Kernel size: $\mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{w}}$
- Number filters: $\mathrm{C}_{\text {out }}$
- Padding: P
- Stride: S

Weight matrix: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K}_{\mathrm{H}} \times \mathrm{K}_{\mathrm{W}}$ giving $\mathrm{C}_{\text {out }}$ filters of size $\mathrm{C}_{\text {in }} \times \mathrm{K}_{H} \times \mathrm{K}_{\mathrm{W}}$ Bias vector: $\mathrm{C}_{\text {out }}$
Output size: $\mathrm{C}_{\text {out }} \times \mathrm{H}^{\prime} \times \mathrm{W}^{\prime}$ where:

- $H^{\prime}=(H-K+2 P) / S+1$
- $\mathrm{W}^{\prime}=(\mathrm{W}-\mathrm{K}+2 \mathrm{P}) / \mathrm{S}+1$

Common settings:
$K_{H}=K_{W}$ (Small square filters)
$P=(K-1) / 2$ ("Same" padding)
$C_{\text {in }}, C_{\text {out }}=32,64,128,256$ (powers of 2)
$K=3, P=1, S=1$ (3×3 conv)
$K=5, P=2, S=1$ (5x5 conv)
$K=1, P=0, S=1$ (1×1 conv)
$K=3, P=1, S=2$ (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: $\mathrm{C}_{\text {in }} \times \mathrm{W}$
Weights: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K}$

Other types of convolution

So far: 2D Convolution

3D Convolution

Input: $\mathrm{C}_{\text {in }} \times \mathrm{H} \times \mathrm{W} \times \mathrm{D}$ Weights: $\mathrm{C}_{\text {out }} \times \mathrm{C}_{\text {in }} \times \mathrm{K} \times \mathrm{K} \times \mathrm{K}$
$\mathrm{C}_{\text {in }}$-dim vector at each point in the volume

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

Applies a 2D convolution over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size $\left(N, C_{\text {in }}, H, W\right)$ and output ($\left.N, C_{\text {out }}, H_{\text {out }}, W_{\text {out }}\right)$ can be precisely described as:

$$
\operatorname{out}\left(N_{i}, C_{\text {out }_{j}}\right)=\operatorname{bias}\left(C_{\text {out }_{j}}\right)+\sum_{k=0}^{C_{\text {in }}-1} \operatorname{weight}\left(C_{\text {out }_{j}}, k\right) \star \operatorname{input}\left(N_{i}, k\right)
$$

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Activation Function

Normalization

Pooling Layers: Another way to downsample

Hyperparameters: Kernel Size
Stride
Pooling function

Single depth slice

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

Max pooling with 2×2 kernel size and stride 2 \longrightarrow

6	8
3	4

Introduces invariance to small spatial shifts
No learnable parameters!

Pooling Summary

Input: C x H x W
Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Common settings:
$\max , \mathrm{K}=2, \mathrm{~S}=2$
max, $K=3, S=2$ (AlexNet)

Output: C x H' x W' where

- $H^{\prime}=(H-K) / S+1$
- $W^{\prime}=(W-K) / S+1$

Learnable parameters: None!

What about shift invariance?

Making Convolutional Networks Shift-Invariant Again

https://richzhang.github.io/antialiased-cnns/

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	

Output

Example: LeNet-5*

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C out $\left.=20^{*}, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU**	$20 \times 28 \times 28$	

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv $\left(\mathrm{C}_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, $\mathrm{S}=2)^{*}$	$20 \times 14 \times 14$	

* 2×2 strided convolution

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C		
out $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C		
Reut $\left.=50^{*}, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
	$50 \times 14 \times 14$	

[^0]** Original paper: sigmoid

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C out $=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C		
Reut $=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
MaxPool(K=2, S=2)*	$50 \times 14 \times 14$	
	$50 \times 7 \times 7$	

* 2×2 strided convolution

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\mathrm{Cout}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\left.{ }_{\text {out }}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU*	500	

* Original paper has different 1×1 convolutions, sigmoid non-linearities

Example: LeNet-5*

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\left.{ }_{\text {out }}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU	500	
Linear (500 -> 10)*	10	500×10

* Original paper uses RBF (radial basis function) kernels instead of a softmax

Example: LeNet-5

Layer	Output Size	Weight Size
Input	$1 \times 28 \times 28$	
Conv (C $\left.{ }_{\text {out }}=20, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$20 \times 28 \times 28$	$20 \times 1 \times 5 \times 5$
ReLU	$20 \times 28 \times 28$	
MaxPool(K=2, S=2)	$20 \times 14 \times 14$	
Conv (C $\left.{ }_{\text {out }}=50, \mathrm{~K}=5, \mathrm{P}=2, \mathrm{~S}=1\right)$	$50 \times 14 \times 14$	$50 \times 20 \times 5 \times 5$
ReLU	$50 \times 14 \times 14$	
MaxPool(K=2, S=2)	$50 \times 7 \times 7$	
Flatten	2450	
Linear (2450 -> 500)	500	2450×500
ReLU	500	
Linear (500 -> 10)	10	500×10

As we go through the network:
Spatial size decreases
(using pooling or strided conv)
Number of channels increases (total "volume" is preserved!)

Problem: Deep Networks very hard to train!

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Activation Function

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Batch Normalization

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance. Why?

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

This is a differentiable function, so we can use it as an operator in our networks and backprop through it!

Activation and weight scaling

(a)

(b)

(c)
4. What step size should you take in the gradient direction, and what would your update squared loss become?
5. Repeat this exercise for the initial weights in column (c) of Figure 5.52.
6. Given this new set of weights, how much worse is your error decrease, and how many iterations would you expect it to take to achieve a reasonalbe solution?
7. Would batch normalization help in this case?

Figure 5.53 Simple two hidden unit network with a ReLU activation function and no bias parameters for regressing the function $y=\left|x_{1}+1.1 x_{2}\right|:$ (a) can you guess a set of weights would fit this function? (b) a reasonable set of starting weights; (c) a poorly scaled set of weights.
2. Starting with the weights shown in column b, compute the activations for the hidden and final units as well as the regression loss for the four input values $\left(x_{1}, x_{2}\right) \in$ $\{-1,0,1\} \times\{-1,0,1\}$.
3. Now compute the gradients of the squared loss with respect to all six weights using the backpropagation chain rule equations (5.78-5.81) and sum them up across the training samples to get a final gradient.

Activation and weight scaling

(a)

(b)

(c)

Activation and weight scaling

(a)

(b)

(c)

Batch Normalization

Input: $\quad x: N \times D$

$$
\left.\begin{array}{rl}
\mu_{j} & =\frac{1}{N} \sum_{i=1}^{N} x_{i, j}
\end{array} \begin{array}{l}
\text { Per-channel } \\
\text { mean, shape is } \mathrm{D}
\end{array}\right] \begin{aligned}
\sigma_{j}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i, j}-\mu_{j}\right)^{2} \quad \begin{array}{l}
\text { Per-channel } \\
\text { std, shape is D }
\end{array} \\
\hat{x}_{i, j} & =\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
\end{aligned} \quad \begin{aligned}
& \text { Normalized } \mathrm{x}, \\
& \text { Shape is } \mathrm{N} \times \mathrm{D}
\end{aligned}
$$

D

Batch Normalization

Input: $\quad x: N \times D$

$$
\begin{aligned}
& \mu_{j}=\frac{1}{N} \sum_{i=1}^{N} x_{i, j} \quad \begin{array}{l}
\text { Per-channel } \\
\text { mean, shape is D }
\end{array} \\
& \sigma_{j}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i, j}-\mu_{j}\right)^{2} \quad \begin{array}{l}
\text { Per-channel } \\
\text { std, shape is D }
\end{array} \\
& \hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}} \quad \begin{array}{l}
\text { Normalized x, } \\
\text { Shape is } \mathrm{N} \times \mathrm{D}
\end{array} \\
& \begin{array}{l}
\text { Problem: What if zero-mean, unit } \\
\text { variance is too hard of a constraint? }
\end{array}
\end{aligned}
$$

Batch Normalization

Input: $\quad x: N \times D$

Learnable scale and shift parameters:

$$
\sigma_{j}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i, j}-\mu_{j}\right)^{2} \begin{aligned}
& \text { Per-channel } \\
& \text { std, shape is D }
\end{aligned}
$$

$$
\gamma, \beta: D
$$

Learning $\gamma=\sigma$,
$\beta=\mu$ will recover the

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}} \quad \begin{aligned}
& \text { Normalized } \mathrm{x} \\
& \text { Shape is } \mathrm{N} \times \mathrm{D}
\end{aligned}
$$ identity function!

$$
\mu_{j}=\frac{1}{N} \sum_{i=1}^{N} x_{i, j} \quad \begin{aligned}
& \text { Per-channel } \\
& \text { mean, shape is } \mathrm{D}
\end{aligned}
$$

$$
y_{i, j}=\gamma_{j} \hat{x}_{i, j}+\beta_{j} \quad \text { Output, }
$$

$$
\text { Shape is } N \times D
$$

Batch Normalization: Test-Time minibatch; can't do this at test-time!

Input: $\quad x: N \times D$

Learnable scale and shift parameters:

$$
\gamma, \beta: D
$$

Learning $\gamma=\sigma$,
$\beta=\mu$ will recover the identity function!

$$
\begin{aligned}
\mu_{j} & =\frac{1}{N} \sum_{i=1}^{N} x_{i, j} \quad \begin{array}{l}
\text { Per-channel } \\
\text { mean, shape is D }
\end{array} \\
\sigma_{j}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i, j}-\mu_{j}\right)^{2} \begin{array}{l}
\text { Per-channel } \\
\text { std, shape is D }
\end{array}
\end{aligned}
$$

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}} \quad \begin{aligned}
& \text { Normalized } \mathrm{x}, \\
& \text { Shape is } \mathrm{N} \times \mathrm{D}
\end{aligned}
$$

$$
y_{i, j}=\gamma_{j} \hat{x}_{i, j}+\beta_{j} \quad \text { Output, }
$$

$$
\text { Shape is } N \times D
$$

Batch Normalization: Test-Time

Input: $\quad x: N \times D$

Learnable scale and shift parameters:

$$
\gamma, \beta: D
$$

Learning $\gamma=\sigma$,
$\beta=\mu$ will recover the identity function!

$$
\mu_{j}=\begin{array}{ll}
\text { (Running) average of } & \text { Per-channel } \\
\text { values seen during } & \text { mean, shape }
\end{array}
$$

(Running) average of
$\sigma_{j}^{2}=$ values seen during training

Per-channel
std, shape is D

$$
\begin{array}{ll}
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}} & \begin{array}{l}
\text { Normalized } \mathrm{x}, \\
\text { Shape is } \mathrm{N} \times \mathrm{D}
\end{array} \\
y_{i, j}=\gamma_{j} \hat{x}_{i, j}+\beta_{j} & \begin{array}{l}
\text { Output, } \\
\text { Shape is } \mathrm{N} \times \mathrm{D}
\end{array}
\end{array}
$$

Batch Normalization: Test-Time

Input: $x: N \times D$

Learnable scale and shift parameters:

$$
\gamma, \beta: D
$$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer

$$
\mu_{j}=\begin{array}{ll}
\text { (Running) average of } & \text { Per-channel } \\
\text { values seen during } & \text { mean, shape is D }
\end{array}
$$

(Running) average of
$\sigma_{j}^{2}=$ values seen during training

Per-channel
std, shape is D

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}} \quad \begin{aligned}
& \text { Normalized } \mathrm{x}, \\
& \text { Shape is } \mathrm{N} \times \mathrm{D}
\end{aligned}
$$

$$
y_{i, j}=\gamma_{j} \hat{x}_{i, j}+\beta_{j} \quad \text { Output }
$$ Shape is $\mathrm{N} \times \mathrm{D}$

Batch Normalization for ConvNets

Batch Normalization for fully-connected networks

Batch Normalization for convolutional networks
(Spatial Batchnorm, BatchNorm2D)

$\mathbf{x : ~} \mathbf{N} \times \mathrm{D}$

Normalize
$\mu, \sigma: 1 \times D$
γ, β : $1 \times D$
$y=\gamma(x-\mu) / \sigma+\beta$

$\mathbf{x}: \mathbf{N} \times \mathbf{C} \times \mathrm{H} \times \mathrm{W}$

Normalize

$\mu, \sigma: 1 \times C \times 1 \times 1$
γ, β : $1 \times C \times 1 \times 1$
$y=\gamma(x-\mu) / \sigma+\beta$

Batch Normalization

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$
\widehat{x}^{(k)}=\frac{x^{(k)}-\mathrm{E}\left[x^{(k)}\right]}{\sqrt{\operatorname{Var}\left[x^{(k)}\right]}}
$$

Batch Normalization

Batch Normalization

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

Layer Normalization

Batch Normalization for fully-connected networks

Layer Normalization for fullyconnected networks
Same behavior at train and test! Used in RNNs, Transformers

Instance Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks Same behavior at train / test!

$\mathbf{x : ~} \mathrm{N} \times \mathrm{C} \times \mathrm{H} \times \mathrm{W}$

Normalize
$\mu, \sigma: 1 \times C \times 1 \times 1$
$\gamma, \beta: 1 \times C \times 1 \times 1$
$y=\gamma(x-\mu) / \sigma+\beta$

\mathbf{x} : $\mathbf{N} \times \mathbf{C} \times \mathrm{H} \times \mathrm{W}$

Normalize

$$
\begin{aligned}
& \mu, \sigma: N \times C \times 1 \times 1 \\
& \gamma, \beta: 1 \times C \times 1 \times 1 \\
& y=\gamma(x-\mu) / \sigma+\beta
\end{aligned}
$$

Comparison of Normalization Layers

Group Normalization

Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Components of a Convolutional Network

Convolution Layers

Activation Function

Pooling Layers

Fully-Connected Layers

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Summary: Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$
\hat{x}_{i, j}=\frac{x_{i, j}-\mu_{j}}{\sqrt{\sigma_{j}^{2}+\varepsilon}}
$$

Summary: Components of a Convolutional Network

Problem: What is the right way to combine all these components?

Convolutional neural networks++

- Training and optimization
- More regularization (dropout, ...)
- Convolutional neural networks
- Pooling

- Batch normalization
- CNN architectures

[^0]: * Original paper: $\mathrm{C}_{\text {out }}=16$, grouped convolutions

