Visual Transformers for Whole Slide Image Diagnosis

Wenjun Wu 05/18/2022

UNIVERSITY of WASHINGTON

Outline

- > Background and Goal
- > Dataset
- > Related Work
- > Our Work
 - HATNet
 - ScAtNet
- > Next Step

Background

UNIVERSITY of WASHINGTON

What is Melanoma?

- Melanoma is the most aggressive type of skin cancer.
- > Melanoma occurs when UV radiation triggers DNA damages in the melanocytes
- > The "gold standard" for diagnosis of invasive melanoma relies on the visual assessments of skin biopsy images by pathologists.

An example of an Invasive Melanoma T1b in M-Path dataset.

Why melanoma diagnosis?

- > Unfortunately, diagnostic errors are common
- > Computer-aided diagnostic system can be a second reader and help reduce uncertainties

Goal

Diagnosis

Dataset

UNIVERSITY of WASHINGTON

Melanoma Dataset

Diagnostic		Number of W	Average WSI size		
Category	Training	Validation	Test	Total	(in pixels)
MMD	26	6	29	61	11843×10315
MIS	25	5	30	60	9133 × 8501
pT1a	33	6	34	73	9490×7984
pT1b	18	6	22	46	14858×12154
Total	102	23	115	240	11130 × 9603

Size of whole slide images

An example image from ImageNet [500 x 375]

An example WSI at 10x [15264 x 19824]

Size of whole slide images

Dataset size

Diagnostic		Number of W	Average WSI size		
Category	Training Validation Test Total		(in pixels)		
MMD	26	6	29	61	11843×10315
MIS	25	5	30	60	9133 × 8501
pT1a	33	6	34	73	9490×7984
pT1b	18	6	22	46	14858×12154
Total	102	23	115	240	11130×9603

TABLE 1: Statistics of skin biopsy whole slide image (WSI) dataset. The average WSI size is computed at a magnification factor of x10. Diagnostic terms for the dataset used in this study are as follows: mild and moderate dysplastic nevi (MMD), melanoma in situ (MIS), invasive melanoma stage pT1a (pT1a), invasive melanoma stage \geq pT1b (pT1b).

Size of whole slide images

Dataset size

cancerous structure vs. normal structure

UNIVERSITY of WASHINGTON

> Multiple Instance Learning

Negative Bag

Positive Bag

> Multiple Instance Learning

> Multiple Instance Learning

- + reduce high computational cost
- + effective in learning instance/bag-wise representation
- Does not allow long-range/global feature interaction
- Prone to label ambiguity/noise

> Segmentation-based methods

Hongming Xu, Cheng Lu, Richard Berendt, Naresh Jha, and Mrinal Mandal. Automated analysis and classification of melanocytic tumor on skin whole slide images. Computerized medical imaging and graphics, 66:124–134, 2018.

> Segmentation-based methods

- + Learns global representation
- + More effective (better performance) on small dataset
- Require fine tissue-level segmentation masks
- Diagnostic performance highly dependent on segmentation quality

> Visual Transformers

Our Work

UNIVERSITY of WASHINGTON

HATNet

HATNet (on a breast dataset)

- > Outperforms CNN-based methods by a large margin
- > Significant overlap between top bags, words and annotations of clinical biomarkers
- > Learned representations from clinically relevant tissue structures without any supervision

ScAtNet

ScAtNet: Soft Label

Hard Label (one-hot encoding)						
TS 1	0	0	1	0		
TS 2	0	0	1	0		
TS 3	0	0	1	0		

Label smoothing (smoothing=0.1)						
TS 1	0.033	0.033	0.9	0.033		
TS 2	0.033	0.033	0.9	0.033		
TS 3	0.033	0.033	0.9	0.033		

Constrained label smoothing						
TS 1	0.5	0.5	0	0		
TS 2	0	0	1	0		
TS 3	0.5	0.5	0	0		

Soft labels (ours)						
TS 1	0.54	0.46	0	0		
TS 2	0	0	1	0		
TS 3	0.28	0.72	0	0		

ScAtNet

- > Outperforms MIL and CNN based methods
- > Achieves comparable performance to 187 practicing U.S. pathologists
- > Saliency analysis shows that ScAtNet learns to weigh features from different scales

Input scales		Accuracy	F1	Sensitivity	Specificity	AUC	
$7.5 \times$	$10 \times$	$12.5 \times$				1	
1			0.55	0.55	0.55	0.85	0.75
	1		0.60	0.60	0.60	0.87	0.77
		1	0.61	0.61	0.61	0.87	0.78
1	1		0.64	0.64	0.64	0.88	0.79
1		1	0.63	0.63	0.63	0.88	0.80
	1	1	0.63	0.63	0.63	0.88	0.79
1	1	1	0.63	0.63	0.63	0.88	0.79

(a) Overall performance of ScAtNet

Next Step

UNIVERSITY of WASHINGTON

Semantic Segmentation-based Method

How do we combine everything?

Acknowledgement

Research reported in this study was supported by grants R01CA200690 and U01CA231782 from the National Cancer Institute of the National Institutes of Health, 622600 from Melanoma Research Alliance, and W81XWH-20-1-0798 from the United States Department of Defense.

Advisor:

Dr. Linda Shapiro

Pathologists:

Dr. Stevan Knezevich

- Dr. Caitlin May
- Dr. Oliver Chang
- Dr. Mojgan Mokhtari

Dr. Donald Weaver

PI:

Dr. Joann Elmore

Collaborators: Shima Nofallah Ximing Lu Dr. Sachin Mehta

Reference

C. Mercan, B. Aygunes, S. Aksoy, E. Mercan, L. G. Shapiro, D. L.Weaver, and J. G. Elmore, "Deep feature representations for variable-sized regions of interest in breast histopathology," IEEE Journal of Biomedical and Health Informatics, 2020.

E. Mercan, L. G. Shapiro, T. T. Brunyé, D. L. Weaver, and J. G. Elmore, "Characterizing diagnostic search patterns in digital breast pathology: scanners and drillers," Journal of digital imaging, vol. 31, no. 1, pp. 32–41, 2018.

H. Pinckaers, W. Bulten, J. Van der Laak, and G. Litjens, "Detection of prostate cancer in whole-slide images through end-to-end training with image-level labels," IEEE transactions on medical imaging, vol. PP, March 2021.

Elmore et al., "Diagnostic concordance among pathologists interpreting breast biopsy specimens," JAMA, 2015.

J. G. Elmore, R. L. Barnhill, D. E. Elder, G. M. Longton, M. S. Pepe, L. M. Reisch, P. A. Carney, L. J. Titus, H. D. Nelson, T. Onega et al., "Pathologists' diagnosis of invasive melanoma and melanocytic proliferations: observer accuracy and reproducibility study," Bmj, vol. 357, 2017.

K. H. Allison, L. M. Reisch, P. A. Carney, D. L. Weaver, S. J. Schnitt, F. P. O'Malley, B. M. Geller, and J. G. Elmore, "Understanding diagnostic variability in breast pathology: lessons learned from an expert consensus review panel," Histopathology, vol. 65, no. 2, pp. 240–251, 2014.

Mehta, Sachin, et al. "End-to-End Diagnosis of Breast Biopsy Images with Transformers." Medical Image Analysis (2022): 102466.

Nofallah, Shima, et al. "Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net." Journal of Digital Imaging (2022): 1-12.

