Classification and Feature Selection for Craniosynostosis

Shulin Yang, Linda G. Shapiro, Michael L. Cunningham, Matthew Speltz, Su-In Lee

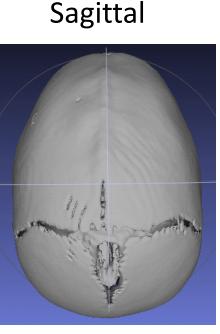
University of Washington

Craniosynostosis

 Craniosynostosis is a common congenital condition in which one or more of the fibrous sutures in an infant's calvaria fuse prematurely.

Coronal Metopic

Wetopic



Goal of our Work

- To analyze 3D skull shapes for the purpose of medical research
 - Classification: which type of craniosynostosis
 - Region selection: which regions contribute most toward classification
 - Quantification: what is the degree of severity of the deformity

Related Work

Previous work

- Craniofacial descriptors that analyzed the shape of the mid-face and back of the head [ICIAP09]
- Classification of two synostoses vs. normal using symbolic shape descriptors [ICCV05, CPCJournal06]

Difference from ours

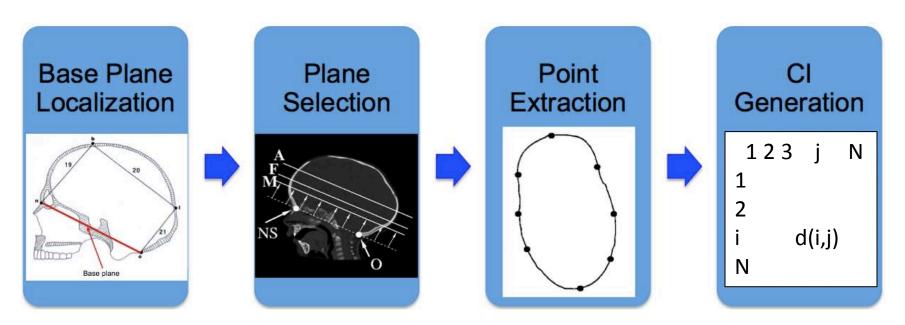
- not fully automatic
- doctors may not understand the methodology
- focus on the whole skull

Overview of our Approach

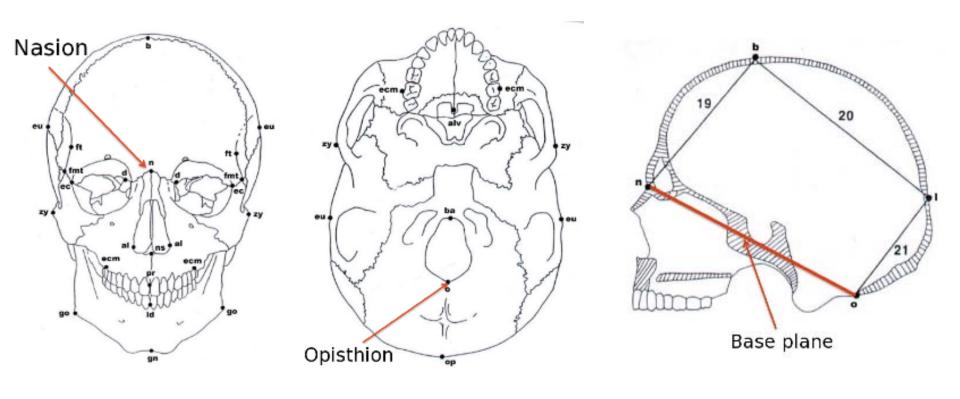
- Two step approach to shape analysis
 - Cranial image (CI) generation
 - A shape representation for 3D images
 - Shape analysis using CI
 - Classification
 - Localization of interest areas on skulls
 - Quantification of craniofacial abnormalities

Cranial Image (CI) Generation

- Automatic system: process 3D CT images
 - Input: CT skull images
 - Output: a distance matrix Cranial Image

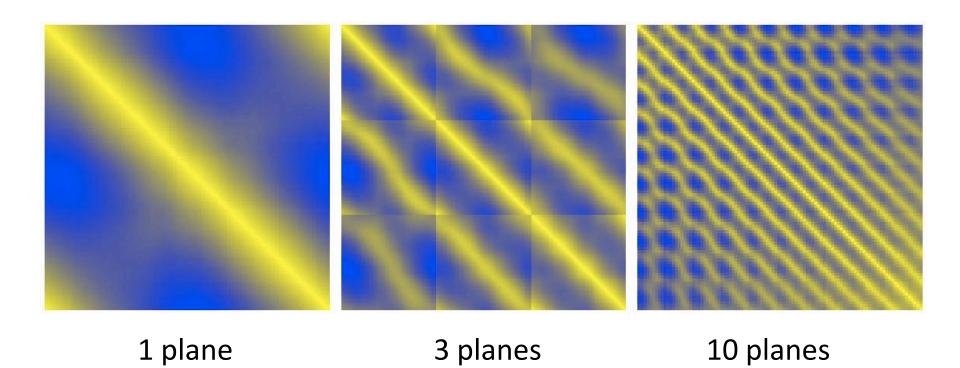


Landmarks



Visualization of Cranial Image

- Yellow represents 0 in the matrix;
- Blue represents 1 in the matrix



Shape Analysis using CI

Goal: classification and feature selection on CI

- Methodology: logistic regression model
 - x: features in a Cranial Image
 - y: classification result for a Cranial Image
 - w: weight assigned to each feature in a Cranial Image

$$p(y|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + exp(-y(\mathbf{w}^T \mathbf{x} + w_0))}$$

Logistic Regression

Find the "w" that minimize the loss function

$$l(w_0, \mathbf{w}) = \sum_{i=1}^n \log(1 + \exp(-y_i(\mathbf{w}^T \mathbf{x_i} + w_0)))$$

$$\{w_0,\mathbf{w}\}=\min_{w_0,\mathbf{w}}l(w_0,\mathbf{w})$$

Regularized Logistic Regression Models

L₁ regularized logistic regression

$$l(w_0, \mathbf{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i(\mathbf{w}^T \mathbf{x_i} + w_0))) + \lambda \sum_{i=1}^{m} |w_i|$$

Fused lasso

suppress the number of selected features

$$l(w_0, \mathbf{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i(\mathbf{w}^T \mathbf{x_i} + w_0)))$$
$$+\lambda \sum_{i=1}^{m} |w_i| + \mu \sum_{\{w_i, w_j\} \in M} |w_i - w_j|$$

suppress the number of selected features

suppress weight differences for pairs of neighboring features

A New Form of Regularized Logistic Regression Models: classo

- cLasso forming feature clusters
 - w^c: weights of the cluster centers of CI features
 - w: residual weights of the features

$$p(y|\mathbf{x}, \mathbf{w}, \mathbf{w^c}) = \frac{1}{1 + exp(-y(\mathbf{w}^T\mathbf{x} + \mathbf{w^c}^T + w_0))}$$

$$l(w_0, \mathbf{w}, \mathbf{w^c}) = \sum_{i=1}^n \log(1 + \exp(-y_i(\mathbf{w}^T \mathbf{x_i} + \mathbf{w^c}^T \mathbf{c_i} + w_0)))$$
$$+\lambda \sum_{i=1}^m |w_i| + \nu \sum_{i=1}^k |w_i^c|$$

of selected features

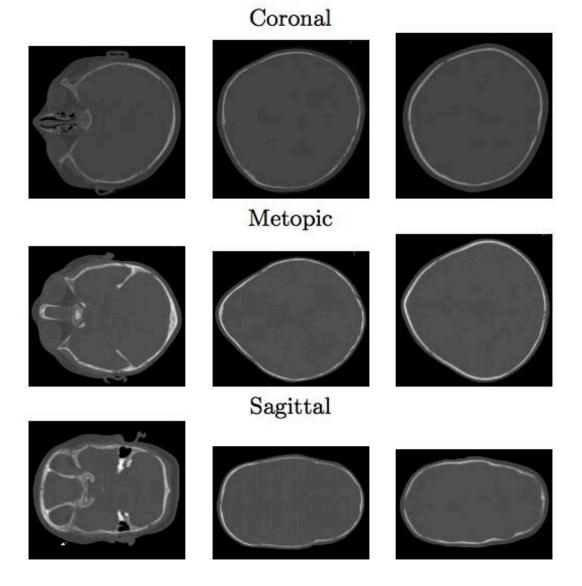
suppress the number suppress the number of feature clusters

Experiments

 Medical data: 3D CT images of children's heads from hospitals in four different cities in the US; 70 images in total; 3 types of craniosynostosis

 Parameter selection: the regularization parameters were found using 10-fold cross validation on the training set

CT data



Classification Results: Error Rates

Results using logistic regression only

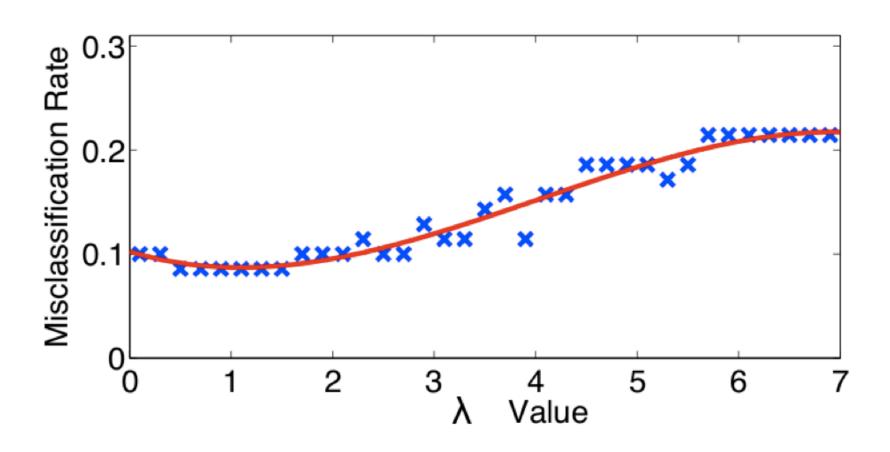
One Plane	$\mathbf{C} \text{ vs } \mathbf{M}$	$\mathbf{M} \text{ vs } \mathbf{S}$	$\mathbf{S} \text{ vs } \mathbf{C}$	3-Classes
A-Plane	3.29 %	$\boldsymbol{12.67\%}$	26.29%	10%
F-Plane	4.39%	17.57%	25.57%	10%
M-Plane	6.29%	17.14%	27.14%	10%

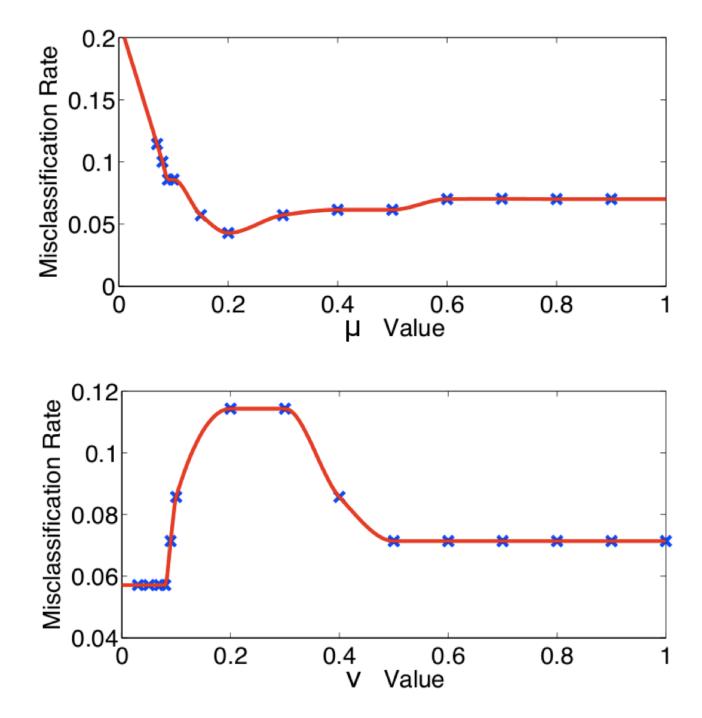
Results using four regression models

Multiple Planes	C vs M	M vs S	S vs C	3-Classes
Logistic regression	13.57%	13.57%	23.93%	10%
L_1 regression	7.14%	5%	6.43%	8.57%
Fused lasso	5.71%	5.71%	4.29%	18.57%
Clustering lasso	$\boldsymbol{4.29\%}$	$\boldsymbol{4.29\%}$	5.71%	7.14%

Parameter selection

Misclassification rate v.s. lamda value

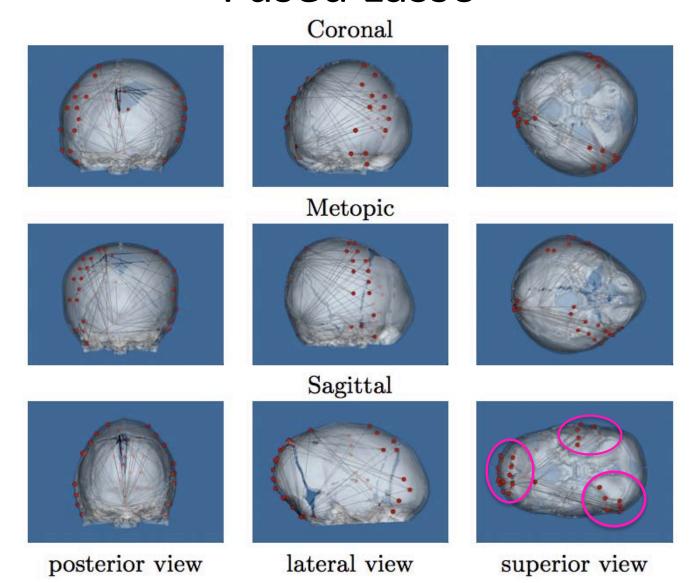




Visualization of Feature Selection using L₁ Regression

Coronal Metopic Sagittal posterior view lateral view superior view

Visualization of Feature Selection using Fused Lasso



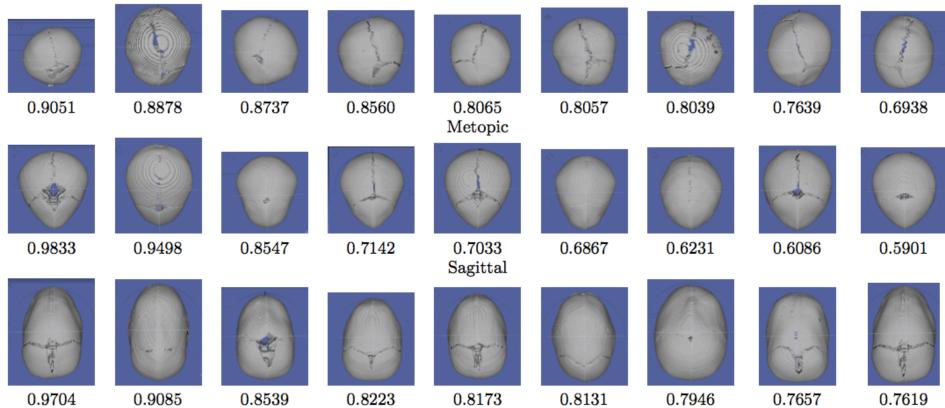
Quantification

- Use the same methodology as classification
 - Use the same training process
 - Replace the decision function: from sigmoid function to the linear combination before taking sigmoid
 - Function response: the severity of craniosynostosis

 Use different training data for each of the three craniosynostosis (coronal, metopic, sagittal)

ID	Type	M rank	O rank	O score	Front	Top	Side view
2086	С	1	1	0.9976			
3014	С	5	2	0.9971			
3026	С	4	3	0.9952			
1087	С	6	4	0.9909			
3003	С	3	5	0.9870			

Coronal



Summary and Future Work

Contributions

- A fully automatic system for skull shape analysis
- New form of logistic regression for feature selection and interest region localization

Future work

- Extension to other 3D shapes, such as facial surfaces
- Landmark detection on 3D surfaces
- Run studies of controls vs abnormal for each class and use results to quantify the degree of abnormality